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Abstract

The Human Immunodeficiency Virus (HIV) targets CD4 T-cells which are crucial in reg-
ulating the immune system’s response to foreign pathogens and cancerous cell development.
Furthermore, several studies link HIV infection with the proliferation of specific forms of can-
cer such as Kaposi Sarcoma and Non-Hodgkin’s Lymphoma; HIV infected individuals can be
several thousand times more likely to be diagnosed with cancer. While our understanding of
both HIV and cancer has increased in the past decade, much remains unknown about the dy-
namic interaction between cancer development and immunodeficiency. In this project, we seek
to apply systems of nonlinear ordinary differential equations to analyze how the dynamics of
primary infection affect the proliferation of cancer. We first begin by characterizing the dynam-
ics of HIV infection. During HIV-1 primary infection, we know that the virus concentration
increases, reaches a peak, and then decreases until it reaches a set point. We studied longitu-
dinal data from 18 subjects identified as HIV positive during plasma donation screening and
applied several models to analyze the dynamics of the systems and determine the most effective
model for characterizing the infection. We prove existence, uniqueness, positivity, and bounded-
ness, investigate the qualitative behavior of the models, and find the conditions that guarantee
the asymptotic stability of the equilibria. In addition, we conduct numerical simulations and
sensitivity analyses to illustrate and extend the theoretical results. Furthermore, we develop
and study a new Tumor-Immunodeficiency model which integrates the effects of an immunod-
eficiency on cancerous tumor cell development. The obtained results are consistent with the
known biological behavior and yield a better understanding of the interaction between cancer
and immunodeficiency.

Keywords: Mathematical Modeling, Human Immunodeficiency Virus, Cancer, Stability, Nu-
merical Simulations, Time Delay, Optimal Control
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1 Introduction

A mathematical model is a platform for understanding the behavior of any dynamical system.
The goal of this project is to use mathematical modeling as a tool to examine and analyze immune
system dynamics in the presence of cancer and immunodeficiency. In this project, we will begin
by describing the biological background necessary to understand the basics of the immune system,
the Human Immunodeficiency Virus (HIV), and cancer. In addition, we will provide the biological
basis for understanding the models we develop and interpreting our results.

Next, we will discuss the four mathematical models we used to characterize the infection and
analyze the dynamics of the system. In the development of the models, we will utilize current
understanding of biological dynamics, apply a few biologically reasonable assumptions, and then
develop systems of nonlinear ordinary differential equations to describe the interactions between
populations within the immune system. We will then prove existence, uniqueness, positivity, and
boundedness for each of the models and carry out several forms of analyses in order to gain a
greater understanding of the interaction of HIV and the immune system as well as the qualitative
behavior of the system including the conditions which guarantee asymptotic stability. We will then
apply longitudinal patient data from 18 subjects identified as HIV positive during plasma virus
donation screening in order to estimate the parameters for our models and determine which of the
models most accurately characterizes the infection. Furthermore, we will use this data to conduct
numerical simulations and sensitivity analyses in order to extend the theoretical results.

We will then use our results, in conjunction with a small study of several tumor-immune dynamic
models, in order to develop and study a new Tumor-Immunodeficiency Model which will integrate
the effects of an immunodeficiency on cancerous tumor cell development. Our results will yield
new insights into the behavior of the cancer during the early stages of HIV infection. Next, we
will discuss treatment protocol options for HIV infected individuals, and develop and examine the
dynamics of a model which integrates treatment protocols for HIV infection. Ultimately, we will
use the proposed treatment model to understand and predict how treatment can possibly modify
the dynamics of the system as well as derive the level of treatment necessary in order to clear HIV
infection from the immune system. The obtained results from our study during this project will
be consistent with the known biological behavior of the immune system and will reveal a better
understanding of the complex interaction and dynamics between cancer and immunodeficiency.

1.1 A Look Forward

Upon conclusion of our study, we will be able to characterize the relationship between cancer
and HIV within the immune system. In doing so, we will illustrate that the immune system plays
a key role in describing the dynamics of infection and limiting the spread of the virus. In addition,
we will show that CD4 T-cells (and thus the immune system) have the ability to control cancerous
cell development, however, when infected by HIV, they lose this ability and the cancer proliferates
uncontrollably. Furthermore, we will explore a model which incorporates treatment therapies, and
use our analysis to determine the treatment levels which are required to eliminate HIV infection
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from the system. Lastly, we will discuss some of the other characteristics that are important to
note during treatment and describe some areas for future work, both extending from our models
as well as work that will be essential for ultimately curing HIV.

1.2 Biological Background

Prior to the discussion of the mathematical model, it is critical to develop a fundamental un-
derstanding of immune system dynamics. The role of the immune system is to recognize self from
non-self and fight off foreign pathogens. The immune system is composed of two types of immunity,
innate and adaptive (acquired) immunity. The innate immune system requires no external stimuli
to initiate a response and is our body’s first line of defense against a foreign pathogen [22]. In
other words, the innate immune system is always present and functioning. One component of the
innate immune system is the anatomic barrier that includes our skin and mucus [22]. Our skin
has an increased acidity in which most organisms cannot survive, and our mucus traps and dispels
unwanted organisms. Both the skin and mucus are constantly functioning in these manners and
require no stimuli from cells within the body. On the other hand, the adaptive immune system is
highly specific. In contrast to the innate immune system, the adaptive immune system responds
to the first exposure to a pathogen to fight off potential infections. Furthermore, the adaptive
immune system possesses the ability to create a memory of previous attacks leading to a more
robust response upon repeat exposure to a pathogen [14]. The focus of the models we develop in
this project will be the adaptive immune system and its interactions with both immunodeficiency
and cancer. Thus, we will begin by describing how the immune system responds to these threats.

1.2.1 HIV

The Human Immunodeficiency Virus (HIV) is special type of virus known as a retrovirus.
Retroviruses are RNA viruses, meaning they contain two copies of a single-stranded, positive sense
ribonucleic acid (RNA) genome. Additionally, a single HIV virion (virus particle) encodes the
enzymes integrase and reverse transcriptase as well as nucleocapsid and gp120 proteins [4]. The
process of viral infection begins when the virus and its contents are transported to the host cell
where gp120, a protein located on the surface of the virus, recognizes the CD4+ receptor located
on the membrane of the target (host) cell [4]. In the case of HIV, this target cell is a CD4 T-cell,
so called due to the receptor located on the surface of the cell. In addition to binding to a CD4+

receptor, the virus must also attach to a co-receptor on the host cell’s surface; this co-receptor is
either the chemokine co-receptor CCR5 or CXCR4 [4]. Once attached, the interaction between the
gp120 protein and the co-receptor results in the virus piercing into the host cell and the fusion of
the virus and host cell membranes. In addition, when fused the release of the viral particles in the
form of the reverse transcription complex (pre integration complex), comprised of the viral enzymes
and viral RNA continues the infectious cycle [4].

Once the reverse transcription complex is released, replication begins. Retroviruses are special
in the sense that during replication they copy their genomes, contained in a reverse transcription
complex, into single-stranded deoxyribose nucleic acid (DNA) through a process known as reverse



1 INTRODUCTION 12

transcription. Subsequently, the single-stranded DNA is further transcribed into double-stranded
DNA. Both steps of reverse transcription are performed by the enzyme reverse transcriptase, which
is co-packaged in the reverse transcription complex [21]. The enzyme integrase carries the double
stranded DNA through a nuclear pore into the nucleus of the host cell. The double-stranded DNA
is then either randomly integrated into the host-cell genome by means of DNA splicing performed
by integrase, or forms stable DNA circles [4]. If integrated into the host cell, the integrated form
of HIV is known as the provirus which then undergoes replication as a part of the host genome.
After replication, RNA transcripts are produced which may either be spliced in preparation for
translation of viral proteins which will facilitate viral replication, or be exported from the nucleus
in an unspliced form for packaging into newly produced viral particles [21]. The enzyme protease
cuts the unspliced viral protein chains into individual proteins. When these proteins are paired
with the genetic material of the virus, a new virus particle is produced. The newly produced viral
particles will then seek new hosts for infection.

Upon the initiation of infection, kinetics are characterized by the number of virions in plasma
which increases rapidly, reaches a peak, and then decays to a steady state (also commonly re-
ferred to as a viral steady state or viral set point level). Correspondingly, there is a decline in the
number of CD4 T-cells from the initial equilibrium value to a minimum which then increases to
a new steady state which is less than the pre-infection equilibrium. The subsequent chronic long
term stage is asymptomatic, generally for a period of several years, until the onset of Acquired
Immunodeficiency Syndrome (AIDS) [4]. Furthermore, plasma viral load and immune activation
at the viral steady state have been shown to be predictors of disease evolution and progression to
AIDS. Thus, an improved knowledge of the initial kinetics during HIV primary infection will be
beneficial to develop a greater understanding of the complex virus-host interaction and its effects
on the establishment of chronic infection.

This initial time period during which these dynamics occur lasts approximately 100 days and
is known as primary infection. Phillips suggested that the behavior of the virus during primary
infection could be the result of target cell limitation in which the virus runs out of new CD4 T-cells
to infect [14]. Biologically this is feasible since we know that HIV is able to lyse HIV-infected CD4
T-cells in vitro. He demonstrated that simulations of a simple model produced a peak in the con-
centration of virus which mimicked the behavior seen in patients. Stafford et al. also explored the
possibility of a target-cell-limited model in modeling the course of primary infection [34]. Yet, ex-
periment studies have correlated the control of HIV during primary infection with the development
of a productive anti-viral immune response; for example in Wilson et al. a CD8 cytotoxic T-cell
response was correlated with control of viral replication at early stages in humans [39]. Here we
seek to apply several models, both with and without accounting for an immune response, in order
to characterize the events in primary HIV infection in order to better understand the biological
underpinnings of the infection.

1.2.2 Immune System

To understand how the body interacts with HIV, we must first understand how the immune
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system responds to pathogens. A primary component of the immune system is the T-cell which is
a lymphocyte that matures in the thymus. T-cell activation is the central event in the initiation of
the adaptive immune response [25]. These cells exist in two distinct populations within the immune
system, Helper T-cells and Cytotoxic T-lymphocytes (also known as Cytolytic T-cells, Cytotoxic
T-cells, or Killer T-cells). During this project we will refer to these types of cells as Cytotoxic
T-lymphocytes (CTLs) or in some cases as a significant subset of Immune Effector cells. The two
types of T-cells are distinguished by a specific protein located on their surface; the Helper T-cell
is distinguished by the CD4+ protein located on the surface whereas the Cytotoxic T-lymphocyte
exhibits a CD8+ protein [22].

The interaction between a näıve T-cell and an antigen presenting cell (APC), such as a den-
dritic cell or macrophage, initiates the immune response. Upon recognition of a pathogen, APCs
process and present peptides from the pathogen on their surface using either Major Histocom-
patibility Complex (MHC) Class I or Class II molecules. Both Helper T-cells and CTLs contain
specialized antibody-like receptors that recognize these molecules; the CD4+ protein of the Helper
T-cell recognizes the MHC class II peptide that is expressed by APCs while the CD8+ protein of the
CTL cell recognizes the MHC Class I molecule. Upon recognition, these cells become activated [25].

Activated Helper T-cells serve as the alarm system of the immune system [29]. Their activation
causes them to secrete cytokines and proliferate (by division). Cytokines are a chemical media-
tor that serve as the communication network for the immune system [14]. In addition, cytokines
secreted by Helper T-cells play a large role in the activation and proliferation of CTLs. When a
T-cell with the CD8+ protein is exposed to the cytokines released by the activated Helper T-cell
the CTL itself becomes activated [22]. When activated, T-cells exhibiting the CD8+ protein are
referred to as Cytotoxic T-Lymphocytes. Once activated, CTLs maintain the ability to kill specific
cells. This occurs when the CTL binds to the target cell and releases a potent chemical called
perforin. Perforin perforates the cell membrane of the infected cells and causes the cells to lyse
(burst) and die [22]. The CTLs kill the infected cell that the Helper T-cells discriminate as harmful.

However, as stated previously, HIV strains will recognize and target the CD4+ protein located
on the surface of the Helper T-cells. The HIV virion bonds with the CD4+ protein of the Helper
T-cell and releases the reverse transcription complex, thereby infecting the cell. Once infected,
the Helper T-cell can no longer function properly and rather is used as a platform for producing
additional copies of the virus [4].

1.2.3 Cancer

Cells that are produced in an uncontrolled manner will produce a tumor or neoplasm. There are
two basic types of tumors, benign and malignant. A tumor that is not capable of indefinite growth
and does not invade the surrounding healthy tissue is known as a benign tumor. On the other hand,
a tumor that continues to grow and becomes progressively more invasive is called a malignant tumor.

Cancer cells can be thought of as altered self cells that either possess or acquire mutations in
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proto-oncogenes or tumor suppressor genes [25]. Proto-oncogenes encode proteins that are involved
in normal cellular growth. Specific cells have the ability to convert proto-oncogenes by mutation
or genetic rearrangements, into oncogenes which are genes that have the potential to cause cancer.
This conversion is a key step in the initiation of most human cancers [25]. For instance, mutations
in the proto-oncogene Ras are known to be the cause of many forms of cancer. However, cells
which acquire mutations in tumor suppressor genes can also result in the development of cancer.
Tumor suppressor genes are normal cellular genes which are crucial for dampening cell growth and
proliferation. Mutations in tumor suppressor genes, such as the TP53 gene, result in an increase in
cell division which, if uncontrolled, will lead to the transformation of a normal cell into a cancerous
cell [29].

There are three proposed mechanisms by which the immune system is thought to control cancer:
destroying viruses that transform cells, eliminating pathogens and reducing pro-tumor inflamma-
tion, and actively identifying and eliminating cancerous cells [25]. The latter mechanism is known
as immunosurveillance. Immunosurveillance suggests that the immune system continuously moni-
tors for and destroys neoplastic cells. Cytokines secreted by cancerous cells or immune cells that
infiltrate tumors can encourage the development of an immunosuppressive response. For instance,
the immunosuppressive cytokine IL-10 plays a role in cancer immunity [25]. This cytokine, secreted
by Helper T-cells, can encourage innate anti-cancer immune responses including the proliferation
of CTLs.

Cancerous cells can be eliminated by two primary cell-types, CTLs and Natural Killer Cells.
CTLs are cytotoxic to cancerous cells provided previous sensitization (activation) has occurred. In
addition, Natural Killer Cells target cancerous cells via a process called antibody-dependent cell-
mediated cytotoxicity [22]. It is important to note that Natural Killer Cells do not need activation
in order to attack a foreign cell and maintain the ability to attack many types of cells. Thus, both
CTLs and Natural Killer Cells contribute to the decrease in the population of cancerous cells.

1.3 Motivation

The protection of individuals from biological threats will be a major challenge for the coming
century. Over 35 million people are currently living with HIV and in 2012 alone, HIV claimed an
estimated 1.6 million lives making it one of the world’s leading infectious killers [29]. Yet, there
is still no vaccine to prevent or cure HIV. Furthermore, development of novel drugs and vaccines
takes well over a decade, has a failure rate of 95%, and costs more than $1 billion per success
[20]. Current approaches to developing new drugs and treatment protocols rely primarily on bi-
ological techniques. Traditionally, biology is an experimental science which relies on qualitative
observations; however, in the past decade the need for quantitative analysis has become much more
evident. Furthermore, recent advances in our understanding of viral and immune system dynamics
as well as medical breakthroughs for combating infections and cancer have created an environment
yearning for advanced mathematical analysis [33].

The application of mathematical analysis allows for the implementation of treatment protocols
and generates the ability to predict and possibly modify system behavior. As recently as twenty
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years ago, this understanding could only be gained through experimentation and repetition [33]. As
a result of the development of high-speed computing and a new field of study combining biological
understanding and mathematical concepts, biological dynamics can now be analyzed using mathe-
matical models. Analysis of these models expands understanding of biological processes, and when
paired with research in treatment protocols, can lead to the development of innovative approaches
to both address and solve perplexing biological problems.

Recent developments in biological understanding, as it relates to HIV and cancer, have created
a platform for mathematical analysis. A report in 2011 denoted that individuals infected with HIV
have a substantially higher risk of certain types of cancers compared with uninfected people of the
same age [22]. For example, individuals infected with HIV are believed to be several thousand
times more likely than uninfected individuals to be diagnosed with Kaposi’s Sarcoma, and at least
70 times more likely to be diagnosed with Non-Hodgkin’s Lymphoma [22]. This is thought to be
a function of the weakened immune system due to infection by the HIV virus. Since the virus
infects the Helper T-cells critical to regulating an immune response, the immune system’s ability
to fight infections and prevent abnormal growth which may lead to cancer is significantly lowered.
Experimental evidence has shown that an uninfected immune system can, and often does, prevent
tumors from developing and thus plays a strong protective role against cancer [22]. However, when
an immune system is exposed to infection by HIV, it is significantly less effective at suppressing
cancerous cell development. This project will use mathematical modeling as a tool to examine and
analyze the interaction between HIV and cancer within the immune system to develop a greater
understanding of this dynamic.

In current bio-mathematical literature there are many papers focused on either tumor growth
modeling or HIV virus dynamics [31]. Many mathematical models have been developed which ana-
lyze the immune system – cancer dynamic as well as the immune system – HIV dynamic; however,
few papers link the two areas of research. Due to the relationship between cancer and HIV within
the immune system during infection, it is important to combine the ongoing research to accurately
describe the interaction. A more advanced understanding of the dynamic within the immune sys-
tem during infection can, when coupled with research in combination drug therapies, lead to the
development of optimum treatment protocols or parameter goals to control both the spread of HIV
and the possible onset of cancer.

Numerous biological operators are included in the adaptive immune system and can be used to
model the interaction between HIV and cancer. In our project, we will use differential equations to
represent changes in cellular populations. While many of these cells are present in large populations
within the body, the models we will consider deal with a subset of the entire cellular population.

We will begin our project by analyzing several models to examine and quantify the behavior of
HIV. We know that during infection, the virus concentration increases, reaches a peak, and then
decreases to a set point. There are two schools of thought as to why the virus reaches a peak
level; first is that the virus runs out of target cells, and second is that the immune responses begins
to impact the level of the virus. We will explore both of these hypotheses. In doing so, we will
examine four separate models which do not incorporate treatment in order to determine how to
best characterize the dynamics of the virus. We will then examine some basic models for cancer-
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ous cell development and determine which one is best for characterizing the dynamics of HIV and
cancer. Then we will develop and analyze more advanced models for HIV which incorporate the
means of combating infection via treatment protocols and time delays present in the natural viral
infectious cycle. Lastly, we will develop and conduct some preliminary analysis on a novel model
which examines the behavior of cancer and immunodeficiency.

We examine the longitudinal viral load data from 18 plasma virus donors who were identified
as HIV positive during the course of their plasma virus donations. In modeling the data, we seek
to capture the dynamics of the viral load behavior during infection and estimate parameters for
the various models and determine the best fit. In addition, we extend our analysis to include a
characterization and estimation of the expansion as well as decay of the virus. Furthermore, we
also intend to define the basic reproductive ratio, R0 for each of the patients, which is a measure
of whether or not a virus can establish infection. Essentially, R0 represents the number of infected
cells produced by a productively HIV-infected cell; thus, If the value of R0 is greater than 1, we
will see the establishment of infection, whereas if R0 is less than one, the infection will not persist.
Our analysis will be able to work towards a better understanding of the complex dynamics of HIV
primary infection as well as the interaction between HIV and Cancer.
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2 Data

The set of longitudinal data gathered from 18 plasma donor samples obtained from 18-23 year-
old HIV-negative women at very high risk of HIV-1 clade C infection in Durban, South Africa [23].
Patients attended twice weekly HIV prevention sessions which included counseling. At each session,
samples were taken to monitor for plasma HIV RNA. The samples consisted of blood and female
reproductive tract samples. Upon positive detection of viremia by NucliSens EasyQ v2.0 assay,
patients were contacted and additional samples were collected and health counseling was provided.
Thus, for each donor, both pre as well as a serial of post infection samples were obtained. All of
the patients provided written informed consent for and the Biomedical Research Ethics Committee
(BREC) of the University of Kwa-Zulu-Natal and the institutional review board of Massachusetts
General Hospital approved the study [23].

Figure 1: Viral Load measurements from all 18 patients identified as HIV-1 positive during plasma testing.
Day 0 indicates the date of the first positive test.

The fitting of the data was performed after three preprocessing steps. First, we removed the
subjects that received Highly Active Anti-retrovial Therapy (HAART) treatment in the very early
stages of infection. For patients 15, 16, 17, and 18 early treatment was initiated on the first day
(day 1) that they were measured to have any viral load present in the plasma. For patient 15,
the initial viral load was 23,500 virions

mL ; for patient 16, the initial viral load was 2,900virions
mL ; for

patient 17, the initial viral load was 62,000virions
mL ; and for patient 18, the initial viral load was

100virions
mL . For patients 15, 16, and 17, the initiation of the HAART treatment resulted in a dra-

matic decrease in viral loads making their data not as useful for establishing a “baseline” for the
un-treated parameter values. For instance, in all three patients that received treatment, viral load
levels were on the order of 102 − 103 virions

mL . In the case of patient 18, the initiation of early
treatment resulted in a sustained viral load levels which was very low (around 100virions

mL ). Thus, in
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all four of the patients, early treatment resulted in viral load levels that were significantly smaller
than the remaining 14 patients, which were approximately 104−106 virions

mL as illustrated by Figure 1.

Figure 2: The viral load measurements of the four patients
that received early treatment.

We can see that the purple and
pink lines in Figure 2, which represent
the viral load levels for these four pa-
tients, are noticeably lower than those
for the other patients. Since we are pri-
marily examining acute infection with-
out treatment (untreated infection which
occurs within the first ≈ 95 days of
infection), all four patients were re-
moved from our analysis. It is impor-
tant to note, that patients 3, 4, and
8 also received HAART treatment: pa-
tient 3’s HAART treatment began on
day 310, patient 4’s HAART treat-
ment began on day 317, and patient
8’s HAART treatment began on day
297.

Examining Figure 3 we can clearly see
the effects of the HAART treatment in patient 8. By day 304, just seven days after the initiation
of treatment, the viral load fell from approximately 125,000 virions

mL to 480 virions
mL . Additionally, we

can see that the viral load level appears to continue to decrease and ultimately achieve a new lower
steady state value after initiation of treatment.

Figure 3: The viral load measurements of patient 8
which received HAART treatment at day 297. The
blue dashed line denotes the day that HAART treat-
ment was administered.

The significant decrease in viral load and
persistence of a lower steady state value sug-
gests that the treatment is not only effective at
very quickly reducing the viral load, but also
that the treatment is effective at limiting and
containing the infection. This is because, as the
viral population decreases, we expect that the
infected cell population will decrease as well. A
lower infected cell population is commonly asso-
ciated with a decrease in the negative physiolog-
ical effects seen by the patient, meaning that the
patient will be much less susceptible to outside
infection. Thus, by significantly decreasing the
population of the virus, the HAART is there-
fore extremely effective at limiting and control-
ling the infection. Yet, for patient 8, these data
points fall outside the time frame that we are
considering (we are considering data points up
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to day ≈ 95) and thus we did not remove this patient from our analysis since doing so would
be unnecessary. Finally, we eliminated any data points before time zero or prior to the onset of
infection (when the viral load was zero) and removed all data points after day 95 since our goal
was to examine the dynamics of primary infection.

We can see from Figure 4 that once we perform the three preprocessing steps and examine
the time in which primary infection occurs, the patients show approximately the same functional
form. This type of behavior is exactly what we expect given what we know about the behavior of
HIV infection. HIV infection is typically characterized by four primary phases of infection: viral
growth phase, peak viral load, viral decay phase, and the steady state phase. Each patient has an
exponential increase in viral load during the first stage of infection, the viral growth phase. Then,
the viral load reaches it’s maximum value at approximately one to two weeks after the onset of
the infection; this peak value is commonly known as the peak viral load. After reaching a peak
value, we see an exponential decrease in the viral load during the third stage of infection commonly
referred to as the viral decay phase. Yet, the viral load does not decay to zero; it achieves a steady
state and remains approximately consistent as the virus becomes latent within the body known as
the viral steady state.

Figure 4: The patient data from the 14 patients that we modeled.

The data that was collected in this study is unique and provides a great opportunity for ad-
vanced analysis and interpretation due to the robustness it provides during the course of primary
infection. Typically, patient data that is collected from HIV infected individuals does not include
the four phases of primary infection. This is primarily due to the means that is used to collect
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patient data, plasma virus donations. Plasma virus donations are typically carried out by private
companies looking to make profits. They test each sample for HIV and test whether or not HIV is
present within the sample. However, if they find that a sample is HIV positive, that specific donor
becomes no longer pertinent for the company since they are not able to use their donations any
longer to make a profit. Thus, if they even track the virus at all, typical HIV data sets sometimes
consist of the initial viral growth phase, and perhaps the peak viral load, but rarely contain data
on the viral decay and steady state.

The study that we obtained the data from was unique due to the nature (and organizations)
that collected the data. The U.S. Army was not concerned with the profits that can be made
from plasma virus donations, rather was much more interested in characterizing the dynamics of
the infection. Thus, when they discovered that a patient was HIV positive, they had them return
almost daily during the first three phases of the infection (viral production, peak viral load, and
viral decay) in order to obtain a robust set of data during this time period. This proves to be
extremely useful for our analysis and gives us an unprecedented glimpse into the dynamics of the
primary infection of HIV.
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3 Fitting

While the patients illustrate the same functional form, there is still variability among the indi-
vidual patients. Thus, we use a nonlinear mixed effects model in order to capture both the fixed
and random effects within the data.

3.1 Nonlinear Mixed Effects Model

Table 1: Parameters for the Nonlinear Mixed Effects Model
Parameter Description

yij jth response on the ith individual
xij predictor vector for the jth response on the ith individual
f nonlinear function of the predictor vector (xij) and φi

eij normally distributed noise term
Ai design matrix of size r × p for the fixed effects
β p vector of fixed population parameters”
Bi design matrix of size r × q for the random effects
bi q vector of random effects

σ2D covariance matrix

The data we gath-
ered was longitu-
dinal patient data
from 14 patients
meaning that the
data was gener-
ated by observing
a number of indi-
viduals at multi-
ple time points un-
der different exper-
imental conditions.
In this case, we as-
sume that the patients constitute a random sample from a larger population of interest. Thus, we
fit the data with a nonlinear mixed effects model which borrows information across subjects while
estimating both the population average and subject-specific parameters.

By using a mixed effects model we account for both fixed and random effects within the data.
Essentially this means that we assume that all of the patients responses follow a similar functional
form with parameters that vary among individuals. Here we present a general form of a nonlinear
mixed effects model, that is a generalization of both the linear mixed effects model and the standard
fixed effects nonlinear model, taken from Bates and Lindstrom [16]. In the case of our study, we
define a general nonlinear mixed effects model for the jth observation on the ith individual as:

(1a) yij = f(φi, xij) + εij

(1b) φi = Aiβ + Bibi

(1c) bi ∼ N(0, σ2D)

where the parameters and their descriptions are listed in Table 1.

3.2 Fitting with Monolix

Using Monolix, we applied the Stochastic Approximation Expectation Maximization Algorithm
in order to estimate various parameters for the model. Monolix uses this algorathim as an op-
timization method in order to produce population fits which provide estimates for population as
well as individual fit parameters. In using this method, Monolix assumes that the data points
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constitute a random sample from a normally distributed larger population. Thus, Monolix abides
by the assumption we made in applying the nonlinear mixed effects model. As a result, we receive
outputs the estimates for the fixed effects as well as estimates for the random effects (reported as
standard deviations) and the standard errors which are determined using a linearization method.

In addition to the data fitting and providing estimates for a number of parameters, Monolix
also calculates the log-likelihood as well as the Akaike and Bayesian Information Criteria. We used
Monolix’s output for the log-likelihood, Akaike Information Criteria, and the Bayesian Information
Criteria in addition to a calculated corrected Akaike Information Criteria and Bayesian Information
Criteria using residuals in order to measure the “goodness of fit” for the models and to ultimately
compare each of the model’s fit of the data.
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4 Target-Cell-Limited Model

Figure 5: A visual representation of the dynam-
ics that governs the interactions in the model.

A basic model of HIV infection which was devel-
oped and has been widely studied in an effort to de-
scribe the viral dynamics of primary infection. The
Target-cell-limited Model suggests that the spread of
HIV infection is limited by the availability of target
cells. This results from the high infectivity of the
virus, which causes it to eliminate a large popula-
tion of target cells upon the initiation of infection.
Thus, the target cells act in a manner which lim-
its the growth of the virus, and the model is hence
known as the Target-Cell-Limited Model. The model
highlights three distinct populations which are de-
noted:

T (t): concentration of target cells at time t,
I(t): concentration of infected cells at time t,
V (t): concentration of free virus at time t.

Thus, we consider the mathematical model of
HIV-1 infection given by the nonlinear system of or-
dinary differential equations:

(2a)
dT

dt
= λ− dT (t)− βV (t)T (t)

(2b)
dI

dt
= βV (t)T (t)− δI(t)

(2c)
dV

dt
= pI(t)− cV (t)

With initial conditions T (0) = T0, I(0) = I0, V (0) = V0.

4.1 Model Development

Equation 2a models the dynamics of the uninfected cellular population. The equation can be
represented by production rate, infection rate, and death rate. The equation is determined to be:

Rate of change of target cell population = (Production rate) - (Infection rate) - (Death rate)

Production rate: We assume that target cells are produced at a constant rate, the target cell
production rate, λ [11, 14, 25].

Infection rate: Target cells can be eliminated by becoming infected by the virus. The interac-
tion between the virus and the target cells is widely known as the mass action principle [14]. This
principle describes, from a mathematical perspective the rate at which the virus infects target cells.
The mass action principle, derived from our current understanding of enzyme kinetics, results in a
term which suggests that the rate of interaction between the virus and target cells, β, is directly
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proportional to the product of the participating populations [11, 14].
Death rate: The target cell death rate term is determined by the elimination of target cells not

due to infection as a result of the virus. The death rate, d, can be assumed to be proportional to
the target cell population [11].

Equation 2b represents the dynamics of infected cells. The equation for the rate of change of the
infected cell population is dictated by both the rate of infection and death rate. The equation can
be represented as:

Rate of change of infected cell population = (Infection rate) - (Death rate)

Infection rate: This term is the same as the infection rate term in the target cell differential
equation with a reversal in sign. This is a result of the fact that the only way that infected cells can
be created is by infecting previously uninfected target cells [14]. The human immune system does
not naturally produce infected cells; thus, the term remains the same as previously determined.

Death rate: Similar to target cell death, infected cells are cleared by the immune system at a
rate, δ, proportional to the infected cell population [14].

Equation 2c mathematically describes the dynamics of the virus cell population. This equation
consists of the virus production rate and viral clearance rate and is:

Rate of change of virus population = (Growth rate) - (Clearance rate)

Production rate: While the virus production rate varies from cell to cell and individual to indi-
vidual, when considering the aggregate population this model assumes the rate of proliferation is
constant and that new viruses are produced at a rate, p, proportional to the infected cell population
[14].

Clearance rate: There are two manners in which the virus-infected cells are eliminated, viral
cytopathic effects and immune-mediated cellular destruction [8]. Viral cytopathic effects occur as a
result of the virus infecting healthy uninfected cells. When a viral particle infects a previously un-
infected cell, the viral particle is removed from the population of virus that maintains the ability to
infect additional uninfected cells. However, viral cytopathic effects are insignificant when assessing
the overall elimination of viral particles and thus, are not illustrated in the model [4]. Immune-
mediated cellular destruction is the immune system’s ability to clear, or eliminate, the virus from
the body. This method typically eliminates a majority of the virus population [6]. The model as-
sumes that the virus is then killed off at a clearance rate, c, proportional to the virus population [14].

It is important to note that all of the model parameters are presumed to be positive. In ad-
dition, there are two biologically reasonable assumptions we are able to make with regard to the
values of parameters in relation to one another. Notably, it is biologically reasonable to assume
that infected cells have a higher death rate than target cells, namely δ ≥ d. Furthermore, in early
HIV infection, before the peak in viral load, we assume that the total number of target cells remains
approximately constant (ie. at equilibrium). Thus, the equilibrium number of target cells is given
by:

dT
dt = 0 =⇒ 0 = λ− βTV − dT, where V=0, =⇒ λ = dT0. Thus, λ = dT0.
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Furthermore, estimates of c made during HIV chronic infection indicate that c ≈ 23day−1 [27].
While this value is estimated from chronic infection, clinical studies have determined that viral
clearance may have the same magnitude during early infection. Furthermore, we know that T0, the
initial number of target cells is fixed.

Table 2: Parameters for the Target-Cell-Limited Model
Parameter Biological Interpretation Units Known Value

λ Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 Estimated*
d Target cell death rate days−1 Estimated*
δ Infected cell death rate days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23

Table 3: Initial Conditions for the Target-Cell-Limited Model
Initial Conditions Value Units

T0 5.9× 105 (Cells)mL−1

I0
c
pV0 (Cells)mL−1

V0 Estimated* (Cells)mL−1

The asterisk in Tables 2 and 3 denotes estimations that we carried our for the Target-cell-limited
model using the data from the patients from Section 2.

4.2 Existence and Uniqueness of Solutions

Prior to conducting an in–depth analysis of the model, it is crucial to show that the solutions
to the initial-value problem exist, and are positive, bounded, and unique.

4.2.1 Positivity and Boundedness

In order to retain the biological validity of the model, we must prove that solutions to the
system of differential equations are positive and bounded for all values of time. For example,
concluding that a population is negative is not biologically feasible. Furthermore, the populations
must remain finite since the human body can only be composed of a finite number of cells. In
addition, boundedness and positivity illustrate that once infected, it is possible that the population
of the virus will continue to exist beneath the detectable threshold without doing significant damage
[25]. The next step in analyzing our model will be to prove positivity and boundedness for the
system of differential equations. We will do so by proving the following theorems.

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0, I(0) > 0,
V (0) > 0, then for all t ∈ [0, t0], T (t), I(t), V (t) will remain positive in R

3
+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t) will be positive in R
3
+. We

know that all of the parameters used in the system are positive. Thus, we can place lower bounds
on each of the equations given in the model. Thus,
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dT

dt
= λ− dT (t)− βV (t)T (t) ≥ −dT (t)− βV (t)T (t)

dI

dt
= βV (t)T (t)− δI(t) ≥ −δI(t)

dV

dt
= pT (t)− cV (t) ≥ −cV (t)

Through basic differential equations methods we can resolve the inequalities and produce:

T (t) ≥ e−μt−β
R

V (t)dt ≥ 0

I(t) ≥ e−δt ≥ 0
V (t) ≥ e−ct ≥ 0

Thus, for all t ∈ [0, t0], T (t), I(t), V (t) will be positive and remain in R
3
+.

Lemma (Boundedness). There exists an TM , IM , VM > 0 such that for T (t), I(t), I(t) lim supt→∞
(
T (t)

)
≤

TM , lim supt→∞
(
I(t)

)
≤ IM , lim supt→∞

(
V (t)

)
≤ VM for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t) will be bounded. We
know that all of the constants used in the system are positive.

dT

dt
+

dI

dt
= λ− dT (t)− δI(t)

Since all of the constants are positive,
d(T + I)

dt
≤ λ−min{d, δ}(T + I)(t)

which implies,
(T + I)(t) ≤ λ

min{d, δ} + c0e
−min{d,δ}t

taking the limsup of both sides,

lim sup
t→∞

(T + I)(t) ≤ lim sup
t→∞

( λ

min{d, δ} + c0e
−min{d,δ}t

)
=

λ

min{d, δ}
So, choose

TM = IM =
λ

min{d, δ}
Thus, (T + I)(t) is bounded, so T (t) and I(t) are all bounded since

T (t), I(t) ≤ (T + I)(t).

So,
T (t) ≤ TM , and I(t) ≤ IM for all t ∈ [0, t0]

Furthermore, since all of the constants are positive, we can place an upper bound on
dV

dt
so,

dV

dt
= pI(t)− cV (t) ≤ pI(t)

Therefore, we can choose
VM = pIM

Thus,
V (t) ≤ pIM = VM .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that V (t) is bounded for all t ∈ [0, t0].
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Theorem 1 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0,
I(0) > 0, V (0) > 0 then ∀t ∈ R T (t), I(t), V (t) will exist in R

3
+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =

⎡
⎣ T (t)

I(t)
V (t)

⎤
⎦ and f(x) =

⎡
⎣ λ− dT (t)− βV (t)T (t)

βV (t)T (t)− δI(t)
pI(t)− cV (t)

⎤
⎦

Note that f has a continuous derivative on R
3 and thus, f is locally Lipschitz in R

3. Hence, by
the Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas
proved on positivity and boundedness of solutions, we know that there exists a unique, positive,
and bounded solution to the ordinary differential equations given in 2(a)− 2(c).

4.3 Local Stability Analysis

Since the virus reaches a steady state, the first major type of analysis that we will conduct
will be a local stability analysis. This analysis allows us to determine the stability of the system
of differential equations around several points, known as critical points (also known as equilibria
or equilibrium points). This form of analysis provides insights into the behavior of the system and
can provide the basis for more advanced forms of analysis such as bifurcation analysis or global
stability analysis.

4.3.1 Critical Points

Theorem (Critical Points). Given the differential equation dx
dt = f(x(t)) a point is considered a

critical point if dx
dt = f(x(t)) = 0 for all t ∈ R.

For the model we consider the critical points for the values corresponding to the various popu-
lations (T, I, V ). A critical point represents a point in the system where, if the system will remain
at that point, the populations will no longer change. Thus, the rate of change for each population
is zero. We obtain the critical points by setting each differential equation equal to zero.

Thus,

dT
dt = 0, dI

dt = 0, dV
dt = 0

So,

y =

⎡
⎣ T (t)

I(t)
V (t)

⎤
⎦ and f(y) =

⎡
⎣ λ− dT (t)− βV (t)T (t)

βV (t)T (t)− δI(t)
pI(t)− cV (t)

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

From a biological perspective we will be able to classify the critical points as persistence or elim-
ination points. If the values for any population at the critical point is zero (T = 0, I = 0, V = 0),
those cells are defined as extinct. Thus, if V = I = 0 , the virus is extinct from the body. A critical
point with these characteristics is known as a viral clearance or viral extinction point. However, if
the value for any population at the critical point is not zero (T �= 0, I �= 0, V �= 0) those cells are
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defined as persistent. If V �= 0 and I �= 0 then the infection persists within the system and the
critical point is known as a viral persistence point.

If the system takes on the value of a critical point at any time, it will remain at the point for
all remaining time. However, unless the initial conditions are exactly one of the critical points, the
system need not necessarily obtain these values. The system may approach the critical point, move
away from the critical point, or cycle between specific values. In order to accurately determine the
behavior and thus how the system will interact with the equilibrium we must undergo a stability
analysis for the system.

4.3.2 Linearization and the Jacobian

In modeling systems it becomes apparent that nearly all systems are non-linear, including the
simple model we are examining. However, most of the theory that has been developed by mathe-
maticians governing the behavior of systems of differential equations, especially stability, is centered
upon linear systems. Thus, in order to further understand the behavior of a non-linear system it is
first crucial to linearize the system. Essentially, this process approximates a non-linear system in
a linear manner. The linear approximation occurs at the critical points which will be denoted Pn,
where n = 1, 2, 3.... Near the critical points we can make a linear approximation and so determine
the local character of the paths. This technique allows the stability of the critical points to be
determined and provides a starting point for global investigations of solutions. The goal of this
stability analysis is to perturb the system from a critical point and examine if the system returns
to the original critical point.

In order to linearize the system, we must compute the Jacobian matrix of the system. The
Jacobian is the matrix of the partial derivatives of each function with respect to each variable.
Essentially, the Jacobian provides a linear approximation of a system at any given point. In
addition, the Jacobian can be generalized to a system of autonomous differential equations:⎡

⎢⎣
dy1

dt
...

dyn

dt

⎤
⎥⎦ =

⎡
⎢⎣

F1(x1, ..., xm)
...

Fn(x1, ..., xm)

⎤
⎥⎦

as

J =

⎡
⎢⎣

dF1
dx1

· · · dF1
dxm

...
. . .

...
dFn
dx1

· · · dFn
dxm

⎤
⎥⎦

Where J is the Jacobian matrix.

4.3.3 Derivation of the Viral Reproduction Number

The notion of a viral reproduction number was initially developed for the field of epidemiology
in order to mathematically characterize the volatility of an infectious disease [5]. In an epidemi-
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ological setting, R0 represents the number of people that an infected individual will infect during
their lifetime. However, this notion can be applied to the study of viral dynamics in vivo. In fact,
the viral reproduction number is an extremely important quantity in our analysis of our models.
Biologically, in an in vivo model, R0 represents the average number of infected cells produced by
an initially infected cell over its lifetime [24]. The value of R0 is a well established norm when
discussing viral infections [24] and is commonly discussed when approaching modeling problems.
We will also see later that the value of R0 has large impacts on the stability properties of the system
as well as the persistence or elimination of infection.

The literature which focuses on HIV typically characterized the R0 value for HIV to be between
3 and 6. This means that for every cell that is infected with HIV, 3 to 4 more infected cells will
be produced. This suggests that the infection will tend to persist within the immune system. We
will conduct analysis to determine the course of infection and mathematically characterize this
behavior, but first we must derive the expression for R0 for the Target-Cell-Limited model.

We know from epidemiological studies that

R0 =
( infection

contact

)(contact

time

)( time

infection

)

This expression reveals that R0 is also a unit-less quantity. When examining the viral repro-
duction number in vivo, we can modify the above expression in order to help us understand the
expression for R0.

R0 = (transmissibility)(avg. rate of contact between susceptible and infected)(duration of infectiousness)

In deriving the expression for R0 for a compartmental model, we use a method called the next
generation operator method. In using this method, we consider the next generation matrix, denoted
G. This matrix is comprised of two parts: F and V −1 where

F =
[
∂Fi(x0)

∂xj

]

and

V =
[
∂Vi(x0)

∂xj

]

In this case, Fi are the new infections, Vi represents the transfers of infections from one compart-
ment to another, and x0 is the disease free equilibrium state.

R0 can then be defined as the spectral radius (dominant eigenvalue) of the next generation
operator, G.

4.3.4 Analysis

Analysis of the eigenvalues of the Jacobian matrix evaluated at the critical points gives insights
into the stability properties at that critical point. There are three possible values for an eigenvalue:
positive, negative, and imaginary. In more complex systems, combinations of all three types of
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values are possible and lead to different interpretations of the stability at the point.

For analysis of a non-linear system, it is necessary to use:

Theorem (Poincare-Perron). Let A be a constant matrix in the system dx
dt = Ax with eigenvalues

λi, i = 1, 2, ..., n

i. If the system is stable, then Re{λi} ≤ 0. i = 1, 2, ..., n

ii. If either Re{λi} < 0, i = 1, 2, ..., n; or if Re{λi} ≤ 0 i = 1, 2, ..., n and there is no zero
repeated eigenvalue; then the system is uniformly stable.

iii. The system is asymptotically stable if and only if Re{λi} < 0, i = 1, 2, ..., n; note that it is
also uniformly stable by ii.

iv. If Re{λi} > 0, for any i = 1, 2, ..., n the solution is unstable

Note: This theorem was adopted from [12].
Remark: If any of the eigenvalues have a positive real part, we define the critical point to be a
source, and thus, unstable. If all of the real parts of the eigenvalues are negative real numbers, we
define the critical point to be a sink, and thus, stable.

One way to find the sign of the eigenvalue is to solve for the eigenvalue explicitly. However, for
more complex systems the eigenvalues can be incredibly complex and difficult to work with. Thus,
in order to determine the sign of the eigenvalue we can use the Routh-Hurwitz Criteria.

Theorem (Routh-Hurwitz Criteria). Given the polynomial

P (x) = xn + a1x
n−1 + ... + an−1x + an,

where the coefficients ai are real constants, i = 1, ..., n, define the n × n Hurwitz matrix using the
coefficients ai of the characteristic polynomial:

Hn =

⎡
⎢⎢⎢⎢⎢⎣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · an

⎤
⎥⎥⎥⎥⎥⎦

where ai = 0 if j > n. All of the roots of the polynomial P (x) are negative or have negative real
parts iff the determinants of all Hurwitz matrices are positive:

det(Hj) > 0, j = 1, 2, ..., n

Considering n=4 and n=5, the theorem simplifies and we are able to apply the theorem to the anal-
ysis of our system.

For n=3, the following conditions must be met:
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(1) a1, a2, a3 > 0

(2) a1a2 > a3

For n=4, the following conditions must be met:

(1) a1, a2, a3, a4 > 0

(2) a1a2 > a3

(3) a1a2a3 > a2
3 + a2

1a4

For n=5, the following conditions must be met:

(1) a1, a2, a3, a4, a5 > 0

(2) a1a2 > a3

(3) a1a2a3 > a2
3 + a2

1a4

(4) (a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)2 + a1a
2
5

Note: The proof of the Routh Hurwitz Criteria is well known and can be found in [38].

The signs of the roots of the polynomials will tend to depend on several parameters known
as threshold parameters. The values of these parameters, sometimes called, the reproductive con-
stants influence and determine the stability of the system. An important part of our analysis will
be deducing and applying these quantities effectively.

The Hartman-Grobman theorem is essential for showing how our analysis of the linearized
system relates to the non-linear system. The Hartman-Grobman Theorem shows that near a
critical point for a nonlinear system

(1) dx
dt = f(x)

the nonlinear system (1) exhibits the same qualitative structure as the linear system.

(2) dx
dt = Jx

Definition. Two autonomous systems of differential equations are said to be topologically equivalent
in a neighborhood of the origin or to have the same qualitative structure near the origin if there is
a homeomorphism H mapping an open set U containing the origin onto an open set V containing
the origin which maps trajectories of (1) in U onto trajectories of (2) in V and preserves their
orientation by time in the sense that if a trajectory is directed from x1 to x2 in U , then its image
is directed from H(x1) to H(x2) in V . If the homeomorphism H preserves the parameterization by
time, then the systems (1) and (2) are said to be topologically conjugate in a neighborhood of the
origin [28].
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Theorem (The Hartman-Grobman Theorem). Let E be an open subset of R
n containing the origin,

let f ∈ C2(E) and letφt be the flow of the nonlinear system (1). Suppose that f(0) = 0 and that
the matrix J(0) has no eigenvalue with zero real part. Then there exists a homeomorphism H of
an open set U containing the origin onto an open set V containing the origin such that for each
x0 ∈ U there is an open interval I0 ⊂ R containing zero such that for all x0 ∈ U and t ∈ I0

H ◦ φt(x0) = eAtH(x0)

Note: Additional details and the proof for the Hartman Grobman Theorem are well known and
can be found in [28].

This theorem essentially states that H maps the trajectories of the nonlinear system near the
critical points onto the trajectories of the linear system near the critical points and preserves the
parameterization of time [28]. In other words, if the Jacobian matrix has no zero or purely imagi-
nary eigenvalues, then the stability properties of the system of nonlinear equations is the same as
those for the system of linear equations at the critical points.

4.4 Application to the Model

The model has two biologically relevant equilibria denoted Pn = (T, I, V ) for n = 1, 2:

P1 =
(λ

d
, 0, 0

)

P2 =
( cδ

pβ
,
pβλ− δdc

cδβ
,
pβλ− δdc

cδβ

)

We characterize P1 as a viral free or viral clearance equilibrium; this means that as t →∞, the
virus will be eliminated from the body. In addition, P1 represents an infection clearance equilibrium
which is highlighted by the fact that V = 0 and I = 0. P2 describes the persistence of the virus,
and thus can be characterized as a viral persistence equilibrium. At these values, the virus will
remain in the system as t → ∞. In addition, it is important to denote that both of the equilibria
have a persistence of uninfected cells.

4.4.1 Jacobian

The Jacobian for the linearized system is:

J =

⎡
⎣ −d− V β 0 −Tβ

V β −δ Tβ
0 p −c

⎤
⎦

The characteristic polynomial is defined as the polynomial side of the characteristic equation,
det(A− xI) = 0 where A is a square matrix, I is the identity matrix, and x is an eigenvalue. The
roots of the characteristic polynomial of the Jacobian will tend to depend on several parameters
known as threshold parameters. The values of these parameters, sometimes called the reproductive
constants, influence and determine the stability of the system.

From Section 4.3.3 we can define:
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R0 =
pβλ

δdc

to be the reproductive constant of the system.

Two theorems will be presented to highlight the relationship between the two reproductive
constants and the local asymptotic stability of the equilibria. Thus, we are able to examine the
value of R0 to determine whether viral persistence or viral extinction occurs as t →∞. As a result,
we may be able to predict the persistence of the HIV upon initial infection simply by determining
the values of these expressions.

4.4.2 Stability Analysis for P1

The Jacobian evaluated at P1 =
(λ

d
, 0, 0

)
becomes:

J1 =

⎡
⎣ −d 0 −βλ

d

0 −δ βλ
d

0 p −c

⎤
⎦

Furthermore, the characteristic equation for P1 is

−1
d
(x + d)(cdδ + cdx + dx2 + dδx− βλp) = 0

From the characteristic equation we can define:

a1 = c + d + δ

a2 = cd + cδ + δd− βλp

d
a3 = cdδ − pβλ

such that
−1

d
(x + d)(cdδ + cdx + dx2 + dδx− βλp) = x3 + a1x

2 + a2x + a3

.

4.4.3 Analysis

Theorem 2 (Local Asymptotic Stability of P1). For the viral clearance equilibrium (P1) given by

(T, I, V ) =
(

λ
d , 0, 0

)

if R0 < 1, then P1 is stable; however if R0 > 1, then P1 is unstable.

Proof. We will use the Routh-Hurwitz Criteria and the values of a1, a2, and a3 to derive the sta-
bility of P1.

We know that all of the parameters are positive. Therefore, a1 = c + d + δ is clearly > 0.

Furthermore, we can express a2 as
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a2 = cd + cδ + δd− βλp

d
= cd + cδ + δd− cδR0

Simplifying the above expression,

a2 = dδ + dc + cδ(1−R0).

Therefore, if R0 < 1, then a2 > 0.

In addition, we can express

a3 = cdδ − pβλ

as

a3 = cdδ(1−R0)

Thus, if R0 < 1, then a3 > 0. However, R0 > 1, then a3 < 0

Also, we can express

a2a1 − a3 = cdδ + (c + d + δ)(c(d + δ) + dδ − βλp
d ) + βλp

Solving in terms of R0 we notice that

a2a1 − a3 = cdδ + (c + d + δ)(c(d + δ) + dδ − cδR0) + βλp.

Thus,

a2a1 − a3 = cdδ + (c + d + δ)(cd + cδ(1−R0) + dδ) + βλp.

Therefore, if R0 < 1 we know that a2a1 − a3 > 0 and thus, a2a1 > a3.

As a result, if R0 < 1 then P1 will clearly be stable. However, if R0 > 1 then a3 < 0 and as a result
P1 will be unstable.

4.4.4 Stability Analysis for P2

The Jacobian evaluated at P2 =
( cδ

βp
,
βλp− cdδ

βδp
,
βλp− cdδ

βδp

)
is:

J2 =

⎡
⎢⎣
−d− pβλ−cdδ

cδ 0 − cδ
p

pβλ−cdδ
cδ −δ cδ

p

0 p −c

⎤
⎥⎦

Furthermore, the characteristic equation for P2 is

cδp2(−c− x)(δ + x)(cδx + βλp)− p(−c3dδ3p− c3δ3px)
c2δ2p2

= 0

From the characteristic equation we can define:
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a1 =
βλp

cδ
+ c + δ

a2 =
βλp

c
+

βλp

δ
a3 = βλp− cdδ

such that

cδp2(−c− x)(δ + x)(cδx + βλp)− p(−c3dδ3p− c3δ3px)
c2δ2p2

= x3 + a1x
2 + a2x + a3

4.4.5 Analysis

Theorem 3 (Local Asymptotic Stability of P2). For the viral persistence equilibrium (P2) given
by

(T, I, V ) =
(

cδ
βp , βλp−cdδ

βδp , βλp−cdδ
βδp

)

will always be stable.

Proof. P2 will only exist if R0 > 1.

From our proof of positivity and boundedness, we know that V and I will always be positive and
thus,

βλp− cdδ > 0

which implies that

1
cdδ

(R0 − 1) > 0

and thus that R0 > 1.

Furthermore, we know that all of the parameters are positive. Thus, clearly

a1 =
βλp

cδ
+ c + δ

and

a2 =
βλp

c
+

βλp

δ

are both > 0.

Additionally, we can express
a3 = βλp− cdδ

as

a3 =
1

cdδ
(R0 − 1)
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Thus, since R0 > 1, we know that a3 > 0.

Also,

a1a2 − a3 = cdδ +
(

βλp

c
+

βλp

δ

) (
βλp

cδ
+ c + δ

)
− βλp

which can be expanded to

a1a2 − a3 =
β2λ2p2

c2δ
+ cdδ +

β2λ2p2

cδ2
+

βδλp

c
+

βcλp

δ
+ βλp

.

Thus, since all of the parameters are positive a1a2 − a3 > 0 and thus a1a2 > a3.

Therefore, whenever R0 > 0, P2 will exist and be stable.

4.5 Parameter Estimates

Initial estimation of the parameters was extremely difficult and inaccurate since several of the
parameters, specifically the rate of infection, β, were extremely sensitive to initial conditions inputs
and had a large residual standard error and thus very difficult to estimate. This is likely due to its
small magnitude (typically O(10−8)−O(10−6)). Thus, we recognized a need to apply an alternative
approach to the estimation of this difficult to estimate parameter. We did so by estimating r, the
viral expansion rate, which is simple to estimate and then solving for β in terms of r. A visual
representation of the rate of viral production, r, can be seen in Figure 6.

Figure 6: A schematic of the calculation of the viral expan-
sion rate, r.

In calculating the value for r, we uti-
lized the data for the entire viral produc-
tion phase prior to the peak viral load
which consisted of data from approxi-
mately the first 7 to 10 days of infection.
Furthermore, in the case where the peak
in the data appeared to be lower than
the expected peak viral load, we elimi-
nated the peak from our estimation. In
addition, we estimated the viral expan-
sion rate via two means. First, we calcu-
lated the value of r by using a linear re-
gression population fit for the exponential
production phase in Monolix. We call the
r obtained from this method rpop. Next,
we calculated value of r by fitting a lin-
ear regression to the data in MATLAB on
a logarithmic scale, this r value is named
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rind.

Next, we know that the population of the virus increases exponentially during the viral pro-
duction phase and thus, dV

dt = rV during this time period. This allows us to solve for β in terms of
r since,

dV
dt =

(
β p

cT − δ
)
V = rV =⇒ r = β p

cT0 − δ =⇒ β = (r + δ) c
pT0

.

Thus, our new system of equations becomes

(2d)
dT

dt
= λ− dT (t)− (r + δ)

c

pT0
V (t)T (t)

(2e)
dI

dt
= (r + δ)

c

pT0
V (t)T (t)− δI(t)

(2f)
dV

dt
= pI(t)− cV (t)

Table 4: Parameters for the Target-Cell-Limited Model with Estimating the Rate of Viral Produc-
tion

Parameter Biological Interpretation Units Known Value
λ Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 (r + δ) c
pT0

d Target cell death rate days−1 Estimated*
δ Infected cell death rate days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23

Table 4 shows the parameters for the equations 2d - 2f where we estimated the rate of viral
production in order to better estimate the value of β which was extremely difficult to estimate.
The asterisk in Table 4 denotes the parameters which we carried our for estimates the Target-Cell-
Limited model using the data from the patients from Section 2. Table 5 includes the values of rind

and rpop obtained from our estimates.

Table 5: Parameter Estimates for the Target-Cell-
Limited Model
Parameter Value s.e.lin r.s.e.lin

ppop 374.75589 121.46572 32.41
dpop 0.00728 0.00098 13.39
δpop 0.24168 0.033 13.66
V0pop 3.84428 0.2951 7.68

As illustrated in Table 5, we obtained
an average value for rpop of 0.966 days−1

and an average of 1.256 days−1 for rind.
Furthermore we see that rpop ranges from
0.818 days−1 to 1.104 days−1 and rind

ranges from 0.640 days−1 to 1.456 days−1;
thus, the variance of rpop is less than rind

which is what we expect given the individ-
ual variability. In addition the values of
both rind and rpop are approximately 1.1
days−1 which is what we expect and is consistent with the results from the literature [30]. While
we used these r values in order to estimate β within the models, the value for r is also crucial for
our estimation and ultimately derivation of the viral reproduction numbers for each of the patients.
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Table 6: Estimations for rpop

and rind

Patient rpop rind

1 1.104 1.440
2 0.999 1.854
3 0.911 1.613
4 0.819 1.284
5 1.057 1.416
6 0.886 0.640
7 0.818 1.308
8 0.904 0.741
9 0.986 1.086
10 1.046 1.436
11 1.070 1.253
12 0.930 0.954
13 0.952 1.107
14 1.037 1.456

Average 0.966 1.256

In addition, Table 5 provides the standard errors (se) and
residual standard errors (rse) for both the population fixed and
random parameters. The standard error measure indicates the
extent to which an estimate deviates from the true population.
The rse is the standard error expressed as a percentage of the
estimate. In general, rse of 25% or higher should be used with
caution. As we can see, the rse values for the population param-
eters are less than 25 with the exception of ppop which is 32.41.
Furthermore, upon examination of the parameter estimates in
Table 5, we notice that the value for the rate of viral decay, δ,
is much greater than d, however is approximately 0.242 days−1.
While this estimation is much greater than that for d, it is much
smaller than we expected given previous studies and the regular
behavior of the virus. For instance, in numerous other studies,
the value for δ has been approximately 0.8 days−1 [27]. A rate of
viral decay of approximately 0.8 days−1 is a much more realistic
than 0.24 days−1 given the known behavior of the virus. This is
because, an infected target cell dies much faster than a standard
non-infected target cell. In order to further investigate this dis-
crepancy, as well as the overall behavior of the model, we plotted

the solution to the differential equation along with the data, the phase portrait, and conducted a
sensitivity analysis.

As previously stated, we first implemented ode45 in MATLAB with the individual fit param-
eters gained from Monolix in order to simulate the individual fits which are displayed below for
patients 7-9. We can see from the graphs that the Target-Cell-Limited model appears to do a
reasonably good job of capturing the viral growth phase, yet, as mentioned previously, the model
seems to consistently underestimate the rate of viral decay phase post peak. This is illustrated by
the fact that the model overestimates the values for the viral load during the decay phase (which
is the phase immediately following the peak viral load until the steady state and occurs between
days 15 and 25). This is also highlighted in the figure since the green dotted line lies above the
blue data points. during this time period.

Figure 7: The Target-Cell-Limited Model Applied to Patients 7 - 9.
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Table 7: Individual Patient R0

Values
Patient R0

1 5.326
2 5.872
3 5.914
4 5.310
5 6.043
6 3.574
7 4.532
8 6.213
9 4.994
10 3.965
11 5.766
12 6.442
13 3.940
14 2.559

Mean 5.032
Median 5.318

Standard Deviation 1.157

We know from our derivation in section 4.3.3 that the viral
reproduction number can be expressed as:

R0 =
βpλ

cdδ

Where β = (r + δ) c
pT0

and λ = dT0

Thus,

R0 =
(r + δ)

δ

For the target-cell-limited model we calculated the value of
the viral reproduction number, R0, for each of the patients using
their individual estimated parameters. We can see from Table
7 that the mean value for R0 is 5.032, which is lower than those
found in previous studies. For instance in Stafford et. al [34] they
analyzed 10 patients and calculated R0 using the same expression
we implemented. They found a median R0 of 5.7 with a range
between 2.8 and 11, which is greater than the values found in
our study: Patient 12 has the highest value for R0 at 6.442 and
patient 14 has the lowest at 2.559. Comparing our parameter
estimates to those in Stafford, we find that our estimate for the

viral growth rate is much smaller (approximately 350 days−1 compared to 850 days−1).

Furthermore, Ribeiro et. al [30] provided estimates of R0 based on data gathered from 47
patients. They obtained a mean value for R0 of 8.63 with an interquartile range of 4.88 - 10.62.
Yet, our results seem to be more consistent from patient to patient, suggesting that some of the
effects may be due to usage of a population fitting vs. individual fitting. For instance, the standard
deviation of our values for R0 is 1.157 compared with 5.30 [30] and 2.6 [34].

A histogram of the distribution of R0 values is shown in Figure 8 which illustrates that most
of the values for R0 are between 5 and 6. Additionally, while there is some deviation among the
individual patients, most of the values for R0 are within the range that we expect of approximately
3 to 6.

4.6 Effects of the Value of R0

We know that the value of R0 has significant effects on the behavior of the model; specifi-
cally with regard to the stability as illustrated in section 4.4. However, there are also correlations
between the value of the viral reproduction number and several of the other quantities that are
important in terms of defining the infection, specifically in this section we will examine the effects
of R0 on the peak and steady state viral loads. These relationship are crucial because they may be
able to yield insights into the long term behavior of the infection, as well as inform us more of the
progression of AIDS.
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Figure 8: A histogram of the Distribution of R0 for all 14 patients

Figure 9: Relationship between peak and steady state viral
loads

One quantity that we wish to examine
is the viral steady state load. This is be-
cause the viral steady state load can yield
many insights about the infection and its
behavior. For instance, a larger steady
state population of the virus is associ-
ated with an increased impact of the virus
on the immune system in the long term.
A larger viral steady state population is
commonly associated with a smaller Tar-
get cell steady state population. Since the
Target cell is the primary active compo-
nent of the immune system, this results in
a greater propensity for long term chronic
health conditions associated with HIV, a
faster progression to AIDS, as well as a
greater risk of cancer cell development. In
addition, a greater peak viral load is com-
monly associated with a more infectious

virus, and thus the ability of the virus to be transmitted from one person to another is likely
greater. As a result, it is crucial to determine and understand the relationship between the viral
reproduction number and the behavior of some of the quantitative metrics of the system.
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Figure 10: Relationship between R0 and peak viral load

First, we examined the relationship be-
tween the value of the peak viral load and
the steady state value. We can see that,
in some cases, as the peak viral load in-
creases, the value of the steady state in-
creases as well, suggesting a positive cor-
relation. However, this is not true for all
of the patients and when we conduct a lin-
ear regression fit, we receive a p value of
0.6971. Thus, we cannot say that there
is a strong positive correlation between
peak viral load and the value of the steady
state. Next we examined the relation-
ship between the viral reproduction num-
ber and the peak viral load. Again, in the
figure we can see that there seems to be lit-
tle relationship between the two quantities and the p value of 0.1656 further highlights this claim.
Additionally, the graph shows that there is generally a weak negative relationship between the two
quantities. However, if we remove one of the outlying data points, specifically, patient number
12, we see that there is generally a positive relationship within the data which is what we expect.
However, even thought it is existent, the relationship is still very weak.

Figure 11: Relationship between R0 and steady state viral
load

Lastly, we examined the relationship
between the viral reproduction number
and the viral load of the steady state. As
we can see in Figure 11, there appears to
be a strong positive correlation between
the two quantities. Upon further analy-
sis, we determine the p value for a linear
correlation to be 0.003529. This suggests,
as we expected, that there is a strong pos-
itive relationship between the viral repro-
duction number and the steady state. Bi-
ologically, this means that the more in-
fectious the virus is, and thus the larger
the value of R0 is, the larger the popula-
tion of the virus will be when the system
reaches the steady state. This notion has
massive implications on predicting the ef-
fects of the infection. For instance, we can
safely say that patients with a higher R0

value will have a higher steady state pop-
ulation, and will thus be subject to significantly more long term chronic health issues. Additionally,
their propensity for developing cancer will be higher since the immune system will be much weaker
during this time period. Ultimately, this means that in the long term, the will be more likely to see



4 TARGET-CELL-LIMITED MODEL 42

cancerous tumor cell development vice if they had lower levels of virus. It also means that we can
focus on reducing the value of the viral reproduction number in an effort to reduce the negative
implications of the higher viral load.

4.7 Numerical Simulations

In order to further examine the behavior of the model, we conducted several numerical simula-
tions using the estimates obtained in Table 5. In our simulations, we investigated the overall system
dynamics as well as the stability properties of the model in order to characterize the behavior.

Figure 12: The Target-Cell-Limited Model simulation using
the population parameters.

Figure 12 illustrates the System Dy-
namic interaction between the Target
Cells and the Virus. We can see that both
the virus as well as the target cells be-
have exactly as expected. Upon initiation
of infection, the population of the virus
increases significantly until it reaches the
peak viral load. After achieving the peak
viral load, the virus decays until it reaches
a steady state. However, Figure 12 also
illustrates the behavior of the target-cells
during infection, which is extremely im-
portant since the target cells are the pri-
mary actors in the immune system, as well
as the cells that have the ability to inter-
act with foreign pathogens, such as can-
cer.

We see from Figure 12 that as the virus population increases, the population of target cells
decreases (from 5.9× 105 cells

mL to 1.5× 104 cells
mL ) leaving the individual increasingly prone to further

infection and ultimately cancerous cell development. It is important to note that the target cell
population reaches its minimum after the peak viral load point. This suggests that increases in
susceptibility to infection and foreign pathogens increases even after the virus reaches its maximum
population.

However, after reaching the minimum, the target cell population begins to increases until it
ultimately reaches a steady state. In this case, the steady state (≈ 1 × 105 cells

mL ) is approximately
17% of the original population of T-cells which is what we see in clinical trials and other studies
[21]. This may be associated with a loss of functionality of the cells the virus infects, and may
prove to be deleterious for an infected individual.
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Figure 13: Target-Cell-Limited Model 2D Phase Portrait illus-
trating the relative changes in the viral and target cell popula-
tions.

Figure 13 is a phase portrait for
the system. Essentially, this figure il-
lustrates a single trajectory to show
how the populations of the target
cells and virus change relative to one
another over time. We can see that
there is an initial spike in the popula-
tion of the virus, until it peaks at ap-
proximately 1015 virions

mL . During this
time, the Target cell population re-
mains relatively constant until just
before the virus reaches its peak, at
which time the population of the tar-
get cells begins to decrease. We then
see a resurgence of the target cells
and a decrease in the population of
the virus. Eventually, the target cell

concentration begins to decrease significantly and then we see an oscillatory relationship between
the population of target cells and that of the virus. This is illustrated by the spiral like nature of
the graphs and suggests a “predator-prey” type relationship between the target cells and virus.

Figure 14: Target-Cell-Limited Model 3D Phase Portrait comparing the Viral, Infected, and Target Cell
populations.

However, in addition to showing how the populations change relative to one another, the phase
portrait in Figure 13 also illustrates the stability characteristics of the system. For instance, we can
see that the trajectory approaches a single point. In this case, this point is a viral persistence point.
This suggests that in the long term the population of the virus as well as target cells (infected and
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uninfected) will remain positive. Based on our previous analysis, we know that the viral reproduc-
tion number for this system is approximately 5, and thus we know that it is clearly greater than
one. Thus, we should expect that the system is asymptotically stable at P2 (the viral persistence
equilibrium), which is exactly what we see in the figure. Figure 13 therefore serves to show that
the trajectory approaches the long term steady state P2 and remains there as t →∞.

Figure 14 again shows the stability, however, Figure 14 highlights how all three of the popula-
tions, the target cells, infected target cells, and virus interact with one another. Importantly, Figure
14 suggests that the population of the virus and infected cells are proportional to one another. This
means that if we are able to eliminate the viral population, we will also be eliminating the infected
cell population. Thus, in order for infection clearance to occur, both V = 0 and I = 0.

4.8 Sensitivity Analysis

In this section we study the sensitivity of the Target-Cell-Limited Model, specifically the plasma
virus concentration to small changes in the model parameters. Essentially, this means that we will
see how the model reacts to changes in the values of individual parameters. The more robust the
model is, the less it will be impacted by changes in a parameter value; the more sensitive a model
is, the more that those changes will impact the behavior, even dramatically.

In conducting this analysis, we will take the partial derivatives of the system with respect to
the individual parameter. This will help us to illustrate the changes in the system that result from
changes in that specific parameter. In a sensitivity analysis, it is very common for models to display
sensitivity to changes of value in specific parameters, yet, display robustness to variance in others.
This type of analysis is useful in refining parameter estimation as well as yielding insights which
are able to reduce the complexity of the model. In our analysis we will use the direct approach to
find the sensitivity functions for the model and simulate the variance of several parameters of the
Target-Cell-Limited Model.

4.8.1 Sensitivity Functions

We denote the sensitivity functions of T, I, and V with respect to an arbitrary parameter q, as
STq(t), SIq(t), SVq(t) where:

STq(t) =
∂

∂q
T (t);SIq(t) =

∂

∂q
I(t);SVq(t) =

∂

∂q
V (t)

Previous work has shown that the dynamics of viral infection are primarily controlled by a few
of the parameters of the model. Specifically, the model is dependent on the values of β, δ, and p.
The corresponding sensitivity systems with respect to β, δ, and p are shown below.
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For β:

(2g) S′
Tβ(t) = −(

V (t)STβ(t) + SVβ(t)T (t)
)− dSTβ(t)

(2h) S′
Iβ(t) =

(
V (t)STβ(t) + SVβ(t)T (t)

)− δSIβ(t)

(2j) S′
Vβ(t) = pSIβ(t) − cSVβ(t)

For δ:

(2k) S′
Tδ(t) = −β

(
V (t)STδ(t) + SVδ(t)T (t)

)− dSTδ(t)

(2l) S′
Iδ(t) = β

(
V (t)STδ(t) + SVδ(t)T (t)

)− SIδ(t)

(2m) S′
Vδ(t) = pSIδ(t) − cSVδ(t)

For p:

(2n) S′
Tp(t) = −β

(
V (t)STp(t) + SVp(t)T (t)

)− dSTp(t)

(2o) S′
Ip(t) = β

(
V (t)STp(t) + SVp(t)T (t)

)− δSIp(t)

(2p) S′
Vp(t) = SIp(t) − cSVp(t)

We then plot the sensitivity functions, illustrating changes in increments of 5% the parameter
by ±25%. The Following Figure shows how these changes in the parameter impact the overall
behavior of the system. Importantly, they also show which parameters are the most sensitive to
changes in their value. We define most sensitive parameters to be the ones where small changes
greatly impact the overall behavior of the system. For instance, examining Figure 15 in the three
patients shown, the rate of viral production, p, appears to be the least sensitive. This is because
the changes in the value of p seem to have very little impact on the overall behavior of the system
in all three cases. However, this cannot be said of the rate of infection, β, or the death rate of
infected cells, δ. With regard to both of these parameters, the changes impact the behavior of the
system much more dramatically.

Variation of the parameter β seems to have a small, but somewhat negligible impact on the
behavior of the system during the viral growth, peak, and viral decay stages. However, immediately
following the viral decay stage, β seems to have a large impact on the system. Specifically, β seems
to be impacting the size of the oscillations as the system approaches the steady state. Notably, the
larger the value of β, the larger the oscillations. However, within the context of our model, this
type of impact is not extremely significant to the overall behavior of the model. However, the same
cannot be said for δ.

Changes in the parameter δ seem to have very little impact during the viral growth phase,
which makes sense in the context of our previous discussion as there would likely not be a lot of
infected cells and the response may be delayed. In our simulations, we determined that the target
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cell population remains relatively constant during the very initial stages of the infection. Thus, we
would expect that a parameter which primarily impacts the population of target cells would not
have a large impact during this time frame. Additionally, the value of δ does not seem to impact
the peak viral load. However, variation in δ significantly changes the rate of viral decay, and thus
the behavior of the model during the viral decay phase. Figure 15 illustrates that the larger the
value of δ, the steeper the rate of decay. Since our model underestimates the rate of viral decay, as
discussed previously, this suggests that our value for δ is lower than it should be, given the data.
Thus, we need to examine this behavior more closely. This will lead us to developing constraints
for the model, which we do in Section 5.

Figure 15: The effect of varying the parameters β, δ, and p on the Virus Dynamics of the Target-cell-limited
Model.
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4.9 Introduction of a Time Delay

In this section, we introduce a time delay into the target-cell-limited model in order to represent
a biologically relevant delay during a stage of the viral life cycle known as the viral eclipse phase.
While such a delay is usually extremely small (and sometimes even negligent) it is important to
consider and may have an impact when we explore treatment options, as treatment often results in
an effective delay on the system. The viral eclipse phase is the portion of time during the virus life
cycle where the virus becomes uncoated upon entering the host cell and prior to the production of
new virions. The delay, denoted τ , represents the time, in days, between infection of a target cell
by a virus and production of new virus particles within the host.

4.9.1 Delayed Target-Cell-Limited Model

Thus, in order to represent the delay, our systems of ordinary differential equations becomes a
system of three nonlinear delay differential equations denoted:

(3a)
dT

dt
= s− dT (t− τ)− βV (t)T (t− τ)

(3b)
dI

dt
= βV (t− τ)T (t− τ)− δI(t)

(3c)
dV

dt
= pI(t)− cV (t)

With initial conditions T (θ) = T0, I(θ) = I0, V (θ) = V0 where θ ∈ [−τ, 0].

These initial conditions are different from those of the standard target-cell-limited model. This
is because dT

dt and dI
dt depend on solutions other than the present, and thus more information is

required beyond the value of the populations at t = 0. For a delay differential equation information
of the interval [t0 − τ, t0] is required. Thus in our case, initial conditions must be defined on the
interval [0 − τ, 0] where τ is the value of the delay since we are starting at time t0 = 0. All
parameters remain the same as in the standard target-cell-limited model, except for the positive
constant τ , which we have introduced. It is important to note that we also defined the rate of
target cell production from the parameter λ to the parameter s for simplicity when explaining the
eigenvalues. Furthermore, we can view the target-cell-limited model as a special case of the delayed
model when τ = 0.

4.9.2 Equilibrium Points

The Equilibrium points for the delayed target-cell-limited model remain the same as they
were for the standard target-cell-limited model. Thus, the delayed target-cell-limited model has
two biologically relevant equilibria denoted Pn = (T, I, V ) for n = 1, 2 where:

P1 =
(s

d
, 0, 0

)

P2 =
( cδ

pβ
,
pβs− δdc

cδβ
,
pβs− δdc

cδβ

)
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Similar to the standard system, we can again characterize P1 as a viral free (viral clearance) equi-
librium and P2 as a viral persistence equilibrium.

In order to determine the stability of these equilibrium, it is necessary to examine the Jacobian
for each equilibrium. However, the notion of a Jacobian and stability for a delayed system is distinct
from that for a non-delayed system.

4.9.3 Jacobian

For τ > 0, we can express the linearized form of the delay differential equation model in matrix
form as follows:

d

dt

⎡
⎣ T (t)

I(t)
V (t)

⎤
⎦ = J0

⎡
⎣ T (t)

I(t)
V (t)

⎤
⎦ + Jτ

⎡
⎣ T (t− τ)

I(t− τ)
V (t− τ)

⎤
⎦

We can then define the characteristic equation to be of the form:

|J0 + e−λτJτ − λI| = 0

where J = J0 + e−λτJτ is the Jacobian of the system.

4.9.4 Stability and Bifurcation Analysis at P1

We will now examine the stability of P1 = ( s
d , 0, 0). For P1

J0 =

⎡
⎣ −d 0 0

0 −δ 0
0 p −c

⎤
⎦ and Jτ =

⎡
⎣ 0 0 − sβ

d

0 0 sβ
d

0 0 0

⎤
⎦

Thus, the Jacobian for the linearized time-delayed system at P1 is:

J =

⎡
⎢⎣
−d 0 − e−λτ sβ

d

0 −δ e−λτ sβ
d

0 p −c

⎤
⎥⎦

The characteristic equation of the Jacobian can be expressed in the form of the following
exponential polynomial:

P (λ, e−λτ ) = λn + a
(0)
1 λn−1 + a

(0)
2 λn−2 + ... + a(0)

n + e−λτ (λn + a
(1)
1 λn−1 + a

(1)
2 λn−2 + ... + a(1)

n )

Similar to a non-delayed system, it is known that a critical point is asymptotically stable if
all roots of the characteristic equation have negative real parts [7]. However, compared with the
characteristic equation for the ordinary differential equation model, the characteristic equation for
the delayed system is much more difficult to deal with. This primarily because the characteristic
equation is transcendental in nature. Thus, there are infinitely many roots to the equation and it
is extremely difficult to find the roots and oftentimes impossible to do so. In addition, we are no
longer able to apply the Routh-Hurwitz criteria to help us characterize the sign of the real part of
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the roots. Yet, it is often possible to determine analytically whether a given point is stable or not.
In doing so, we will utilize Rouche’s Theorem, along with the continuity of τ , which imply that
the transcendental equation has roots with positive real parts if and only if it has purely imaginary
roots. Thus, we shall determine if the characteristic equation has purely imaginary roots. We will
then be able to determine conditions which yield negative parts for all of the eigenvalues and thus
determine the stability properties of the equilibria.

From the Jacobian we obtain that the characteristic equation for P1 is:

e−λτ (d + λ)
(− psβ − de−λτ (−c− λ)(d + λ)

)
= 0

which can be expanded such that:

λ3 + (c + d + δ)λ2 + (cd + cδ + dδ)λ− psβe−λτ − psβ

d
e−λτλ + cdδ = 0

This equation can be expressed as an exponential polynomial of the form:

λ3 + a1λ
2 + a2λ + a3e

−λτ + a4e
−λτλ + a5 = 0

where

a1 = c + d + δ

a2 = cd + cδ + dδ

a3 = −psβ

a4 = −psβ
d

a5 = cdδ

In order to determine the signs of the roots for the characteristic polynomial, we can assume
that λ = iω where ω > 0. Substituting this expression into our characteristic equation, we obtain:

(iω)3 + a1(iω)2 + a2(iω) + a3e
−iωτ + a4e

−(iω)τ (iω) + a5 = 0

which is equivalent to

−iω3 − a1ω
2 + a2iω + a3(cos (ωτ)− i sin (ωτ)) + a4(cos (ωτ)− i sin (ωτ))iω + a5 = 0

Separating the real and imaginary parts, we get

Real: −a1ω
2 + a3 cos (ωτ) + a4 sin (ωτ)ω + a5 = 0

Imaginary: −ω3 + a2ω − a3 sin (ωτ) + a4ω cos (ωτ) = 0

We can rewrite these expressions as a system of equations where

a1ω
2 − a5 = a3 cos (ωτ) + a4 sin (ωτ)ω

ω3 − a2ω = a4ω cos (ωτ)− a3 sin (ωτ)

Squaring both sides, we receive
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a2
1ω

4 − 2ω2a1a5 + a2
5 = a2

3 cos2 (ωτ) + 2ω cos (ωτ) sin (ωτ)a3a4 + a2
4 sin2 (ωτ)ω2

ω6 − 2ω4a2 + a2
2ω

2 = a4ω cos (ωτ)− a3 sin (ωτ)

Adding both equations together we receive

ω6 + (a2
1 − 2a3)ω4 + (a2

2 − 2a1a5)ω2 + a2
5 = a3 + ω2a2

4

so we can definite the transcendental equation as

ω6 + (a2
1 − 2a3)ω4 + (a2

2 − 2a1a5 − a2
4)ω

2 + (a2
5 − a2

3) = 0

For our analysis we let z = ω2.

such that

h(z) = z3 + b1z
2 + b2z + b3 = 0

where

b1 = a2
1 − 2a2

b2 = a2
2 − 2a1a5 − a2

4

b3 = a2
5 − a2

3

Lemma. if b2 > 0 and b3 > 0, then h(z) has no positive real roots.

Proof. We know that since h(z) = z3 + b1z
2 + b2z + b3 = 0,

dh(z)
dz

= 3z2 + 2b1z + b2

Setting equal to zero we can determine that the roots of dh(z)
dz are

z1,2 =
−b1 ±

√
b2
1 − 3b2

3

if b2 > 0 then b2
1 − 3b2 < b2

1 and thus
√

b2
1 − 3b2 <

√
b2
1 =⇒

√
b2
1 − 3b2 < b1.

As a result, neither z1 nor z2 is positive. Thus, dh(z)
dz has no positive real roots. Since h(0) =

b3 > 0 by assumption, we know that h(z) has no positive roots as well.

Remark: This lemma implies that there is no ω such that iω is an eigenvalue of the characteristic
equation. Thus, the characteristic equation does not have a pair of purely imaginary roots. As a
result, the real parts of all the eigenvalues of the characteristic equation are negative for all τ ≥ 0.

Theorem 4 (Local Asymptotic Stability of P1). For the delayed target-cell-limited model, the viral
extinction equilibrium for (P1) given by

(T, I, V ) =
(

s
d , 0, 0

)
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if R0 < 1, then the real parts of all the eigenvalues of the characteristic equation are negative and
P1 is stable when 0 ≤ τ < τ0 and unstable when τ0 < τ where

τ0 =
1
ω0

(
cos−1

(a3a1ω
2
0 − a3a5 − a4a2ω

2
0 + ω4

0a4

a2
4ω

2
0 + a2

3

))
+

2π

ω0
j for j = 0, 1, 2, 3, ....

and

a1 = c + d + δ

a2 = cd + cδ + dδ

a3 = −psβ

a4 = −psβ
d

a5 = cdδ

Proof. We know that
b3 = a2

5 − a2
3

Thus,
b3 = (cdδ)2 − (psβ)2

We know that R0 = psβ
cdδ . Thus, psβ = R0(cdδ) and

b3 = cdδ(1−R0)

Thus, if R0 < 1, then b3 > 0.

Furthermore, we know that
b2 = a2

2 − 2a1a5 − a2
4

Thus,

b2 = (cd + cδ + dδ)2 − s(c + d + δ)(cdδ)− psβ

d

2

= −(
psβ

d
)2 + (dδ)2 + c2(d2 + δ2)

.
We know that psβ

d = R0cδ and thus

b2 = −(R0cδ)2 + (dδ)2 + c2 + δ2 + c2d2 = c2δ2(1−R2
0) + (dδ)2 + c2d2

Thus, if R0 < 1 we know that b2 > 0.

Additionally, by the previous lemma and remark, we know that since b3, b2 > 0 then h(z) has no
positive real roots and therefore the real parts of all the eigenvalues of the characteristic equation
are negative for all τ ≥ 0.

However, if R0 > 1 then b3 < 0 and thus, h(0) < 0 and as a result, limz→∞ = ∞ and thus h(z)
has at least one positive root which we will call z0. As a result, the characteristic equation has a
pair of purely imaginary roots ±iω0. Furthermore, if R0 > 1, then there is potential that b2 < 0.

If b2 < 0 then
√

b2
1 − 3b2 > b1, thus z1 = −b21+

√
b21−3b2

3 > 0 so h(z) has a positive root and thus the
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characteristic equation has a pair of purely imaginary roots ±iω0.

Let λ(τ) = iω(τ) such that ω(τ0) = ω0.

Then, we know from the system of real and imaginary parts of the characteristic equation that

a1ω
2
0 − a5 = a3 cos ω0τ0 + a4 sin ω0τ0ω0

and
ω3

0 − a2ω0 = a4ω0 cos ω0τ0 − a3 sin ω0τ0

Thus, we know that
a3 sin ω0τ0 = a2ω0 + a4ω0 cos ω0τ0 − ω3

0

and that

sin ω0τ0 =
a2ω0 + a4ω0 cos ω0τ0 − ω3

0

a3

Substituting this into the first equation, we receive

a1ω
2
0 − a5 = a3 cos ω0τ0 + a4(

a2ω0 + a4ω0 cos ω0τ0 − ω3
0

a3
)ω0

Therefore,

a1ω
2
0 − a5 = a3 cos ω0τ0 +

a4a2ω
2
0

a3
+

a2
4ω

2
0

a3
cos ω0τ0 − ω4

0a4

a3

so

a1ω
2
0 − a5 − a4a2ω

2
0

a3
+

ω4
0a4

a3
= cos ω0τ0(

a2
4ω

2
0

a3
+ a3)

which implies that

a3a1ω
2
0 − a3a5 − a4a2ω

2
0 + ω4

0a4 = cos ω0τ0(a2
4ω

2
0 + a2

3)

Thus,

τ0 =
1
ω0

(
cos−1

(a3a1ω
2
0 − a3a5 − a4a2ω

2
0 + ω4

0a4

a2
4ω

2
0 + a2

3

))
+

2π

ω0
j for j = 0, 1, 2, 3, ...

Therefore, P1 is stable when 0 ≤ τ < τ0 and unstable when τ0 < τ . Thus, there exists a Hopf
bifurcation at τ0.

4.9.5 Stability and Bifurcation Analyses at P2

We will now examine the stability of P2 = ( cδ
pβ , psβ−cdδ

pβδ , psβ−cdδ
cβδ ). For P2

J0 =

⎡
⎣ −d− psβ−cdδ

cδ 0 0
psβ−cdδ

cδ −δ 0
0 p −c

⎤
⎦ and Jτ =

⎡
⎢⎣

0 0 − cδ
p

0 0 cδ
p

0 0 0

⎤
⎥⎦
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Thus, the Jacobian for the linearized time-delayed system at P2 is:

J =

⎡
⎢⎣
−d− psβ−dcδ

cδ 0 − e−λτ cδ
p

psβ−dcδ
cδ −δ e−λτ cδ

p

0 p −c

⎤
⎥⎦

From the Jacobian we obtain that the characteristic equation for P2 is:

e−2λτ (δp2c(δ + λ)(−λ− c)e2λτ (βps + δλc)− p(−dδ3pc3eλτ − δ3λpc3eλτ ))
δ2p2c2

= 0

Which can be expanded such that

dδ3p2c3e−λτ + λ(δ3p2c3e−λτ − βδp3c2s− βδ2p3cs− δ3p2c3)− βδ2p3c2s− δ2λ3p2c2 + λ2(−cβδp3s−
δ2p2c3 − δ3p2c2) = 0

This equation can be expressed as an exponential polynomial of the form:

λ3 + a1λ
2 + a2λ + a3e

−λτ + a4e
−λτλ + a5 = 0

where

a1 = c + pβs
cδ + δ

a2 = psβ
c + psβ

δ + cδ

a3 = −cdδ

a4 = −cδ

a5 = psβ

Knowing that R0 = spβ
cdδ we can rewrite a1, a2, ..., a5 as:

a1 = c + dR0 + δ

a2 = dδR0 + cdR0 + cδ

a3 = −psβR0

a4 = − psβ
dR0

a5 = cdδR0

Similar to P1 we can say that h(z) = z3 + b1z
2 + b2z + b3 = 0 where

b1 = a2
1 − 2a2

b2 = a2
2 − 2a1a5 − a2

4

b3 = a2
5 − a2

3

Thus, for P2, we know that:

b2 = d2R2
0(c

2 + δ2) and b3 = R2
0(cdδ)2(1−R2

0).

Furthermore, we know that R0 > 1 for P2 to exist. Thus, we know that b3 < 0 and b2 > 0.
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Since b3 < 0, we know that h(0) < 0 and thus that limz→∞ h(z) =∞. Thus, h(z) has a positive
root, z0, and thus the transcendental equation has at least one positive root, ω0. This implies that
the characteristic equation has a pair of purely imaginary toots ±iω0.

For P1 we derived the expression for a Hopf bifurcation as

τ0 =
1
ω0

(
cos−1

(a3a1ω
2
0 − a3a5 − a4a2ω

2
0 + ω4

0a4

a2
4ω

2
0 + a2

3

))
+

2π

ω0
j for j = 0, 1, 2, 3, ...

We can again use this expression from P1 and substitute the values for a1, a2, ...a5 for P2 and
can state the following theorem for P2:

Theorem 5 (Local Asymptotic Stability of P2). For the delayed target-cell-limited model, the viral
extinction equilibrium for (P2) given by

(T, I, V ) =
(

cδ
pβ , psβ−cdδ

pβδ , psβ−cdδ
cβδ

)

P2 is stable when 0 ≤ τ < τ0 and unstable when τ0 < τ where τ0 = 1
ω0

(
cos−1

(
a3a1ω2

0−a3a5−a4a2ω2
0+ω4

0a4

a2
4ω2

0+a2
3

))
.

where:

a1 = c + dR0 + δ

a2 = dδR0 + cdR0 + cδ

a3 = −psβR0

a4 = − psβ
dR0

a5 = cdδR0

Proof. The proof for Theorem 5 is exactly the same as that for Theorem 4 with the only difference
being the values for a1, a2, ...a5.

4.9.6 Parameter Estimation and Numerical Simulations

Table 8 highlights the estimates for the parameters for the delayed target-cell-limited model.
From the table, we can see that the estimates for the parameters remain relatively close to those
of the standard target-cell-limited model, and that the value of the delay is essentially zero (O−9).
Thus, the delay is negligible, and does not play a huge role in governing the overall dynamic of the
system. This notion is further illustrated when we conduct some numerical simulations.

From the figures, we can see that for a delay where τ = 0, 0.25, 0.5, 0.75, 1 the behavior of the
system looks relatively similar. The only noticeable difference due to the delay is the minimum
population of target cells achieved immediately following the peak viral load. As the delay in-
creases, the minimum number of target cells decreases. Yet, importantly, the value for the steady
state does not change due to the length of the delay. However, our bifurcation and stability analysis
from Section 4.8.4 and 4.8.5 suggest that there is a value of τ that can have a significant impact
on the behavior and stability of the system.
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Table 8: Parameter Estimates for the Delay Target-Cell-Limited Model
parameter value s.e.lin r.s.elin

ppop 427.95098 141.53865 33.07
dpop 0.00818 0.00105 12.79
δpop 0.27428 0.04259 15.53
Vipop 3.95698 0.27713 7
τpop 2.18× 10−9 7.2× 10−6 3.3× 105

In Figure 16, we vary the length of the delay and illustrate the impact that changes in τ have
on the behavior of the system. The top image represents the non-delayed system, or where τ = 0.
In descending order we increase the value of τ by 0.25, until τ = 1. Given the value of R0, which
we know is greater than one, and according to Theorem 5, we would expect that the system will
achieve a stable viral persistence equilibrium when 0 ≤ τ < τ0, however that the equilibrium will
become unstable when τ0 < τ where

τ0 =
1
ω0

(
cos−1

(a3a1ω
2
0 − a3a5 − a4a2ω

2
0 + ω4

0a4

a2
4ω

2
0 + a2

3

))

The figure highlights that as the length of the delay increases from 0 to 1, the population of
the virus remains largely unaffected and the viral persistence equilibrium is stable since both the
virus and Target cells achieve the same steady state as the non-delayed system. While the virus
population over time and equilibria remain the same, the population of the Target cells exhibits
increased dynamical behavior during the growth and peak phases of the viral cycle. More specif-
ically, the target cell population changes drastically as it approaches the minimum value which is
achieved post peak viral load.

This change would correspond to a much weaker and much more susceptible immune system
during this time period where the patient would be prone to infections, and in our case, possibly
immense cancerous cell growth. However, as shown above if we keep increasing the value of the
delay, a bifurcation will occur within the system.
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Figure 16: The effect of varying the delay, τ .
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Figure 17: The bifurcation that results from the change in the value of the delay, τ .

Figure 17 illustrates the virus and target cell populations in the system dynamic interaction
plot as well as the stability characteristics in the system phase portrait where τ = 2.3. Similar to
the plots in Figure 16, the cases where 0 ≤ τ ≤ 1, the viral clearance equilibrium remains stable.
However, unlike in Figure 16, we can see in Figure 17 that the delay’s effect on both the target
cells as well as the virus is much more pronounced and the dynamics are becoming increasingly
complicated. This notion is underscored by the increasing complexity of the system phase portrait,
especially post peak viral load. Especially notable is the drastic decrease seen in the viral load
during this time period. Furthermore, after the decrease in the peak viral load, the virus resurges,
returning to a value which is approximately 10% of the steady state value. This dynamic is even
more interesting when we consider that during this time period, the population of target cells re-
mains almost unchanged. Yet, despite the fact that the dynamics between the populations seem to
be becoming more complicated, the long term equilibria remains unaffected when τ = 2.3.
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Next, we explored what occurs with the system when we make small deviations to the delay,
and we notice that a bifurcation occurs, just as we predicted. Figure 18 illustrates the notion of a
bifurcation occurring with respect to the value of the delay.

Figure 18: The bifurcation that results from the change in the value of the delay, τ .

When we set τ = 2.35, we see a drastic change in the behavior of the system, specifically the
long term equilibria. As highlighted in Figure 18, the population of the Target cells no longer
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achieves a steady state, resulting in an unstable equilibria where the virus population remains at a
positive population and the target cell population increases indefinitely. This bifurcation represents
the case where τ > 1

ω0

(
cos−1

(
a3a1ω2

0−a3a5−a4a2ω2
0+ω4

0a4

a2
4ω2

0+a2
3

))
. While this is biologically infeasible, the

population of the target cells by day 115 is O(10110) cells
mL , it is an illustration the bifurcation we

derived in the previous section does indeed exist within the system.

While this seems like a purely mathematical exercise, especially given that the delay in the
system is so small, the bifurcation has extremely important implications for treatment therapies
and effective treatment of patients. We will develop and discuss this notion in the section which
deals with the Treatment Model.
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5 Constrained Target-Cell-Limited Model

5.1 Model Development

Figure 19: A schematic of the calculation of the rate of viral
decay, α.

In examining our fits for patients
1 through 14 given by the target-cell-
limited model, we noticed that the model
seemed to consistently underestimate the
magnitude of the viral decay phase, we
received approximately 0.242 days−1 vice
an expected ≈ 0.8 days−1. Furthermore,
we can also see that the model does not
seem to fit the data very well during the
decay phase; the model tends to overesti-
mate the value of the viral load. Thus, us-
ing both the qualitative and quantitative
analyses, we determined that the model
overestimated the viral load during the
time from the peak viral load until the
steady state. In the target-cell-limited
model where c � δ the concentration
of infected cells and virus become equi-

librated; thus, their values are approximately proportional to one another [30].

Figure 20: A visual representation of the constraints im-
posed by the target-cell-limited model.

Therefore, after the peak viral load and
before the establishment of a steady state,
the infected cells should decay at approxi-
mately the same rate as the virus and thus
we use the easy to estimate rate of viral de-
cay from the peak, α, in order to estimate
the net loss of infected cells. We know
that the rate of viral decay will underesti-
mate the true infected cell death rate, and
thus α will be slightly less than δ during
the decay phase. However, the approxima-
tion should result in a much more accurate
value of δ. Thus, the constrained target-
cell-limited model uses the individual esti-
mates of α in order to estimate the value of
δ during the exponential decay phase of the
virus after the peak viral load. This usage
of α serves a constraint added to the stan-
dard target-cell-limited model and thus we
refer to this second model as the constrained target-cell-limited model.
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In deriving the model we know that,

V ≈ p
c I =⇒ I ≈ c

pV =⇒ c
p

dV
dt = βV T − δ c

pV =⇒ dV
dt =

(
β p

cT − δ
)
V = −αV =⇒ −α =

β p
cT − δ =⇒ δ = β p

cT + α

Thus, we can define a piece wise function which describes the three phases of the model the
occur during the period of infection (the viral production, viral decay, and steady state phases). The
model considers the same populations as the Target-Cell-Limited Model. Thus, we have a system
of three nonlinear ordinary differential equations to describe the dynamics of the populations:

(4a)
dT

dt
= λ− dT (t)− (r + δ)

c

pT0
V (t)T (t)

(4b)
dI

dt
= (r + δ)

c

pT0
V (t)T (t)− f(t)I(t)

(4c)
dV

dt
= pI(t)− cV (t)

where

⎧⎪⎨
⎪⎩

f(t) = δ 0 ≤ t ≤ t1

f(t) = β p
cT (t) + α t1 ≤ t ≤ t2

f(t) = δ t2 ≤ tmax

Table 9: Parameters for the Constrained Target-Cell-Limited Model
Parameter Biological Interpretation Units Known Value

λ Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 (r + d) c
pT0

d Target cell death rate days−1 Estimated*
δ Infected cell death rate days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23
α Rate of Viral Decay days−1 Estimated* (using α)
t1 Initial time of viral decay days From Data*
t2 final time of viral decay days From Data*

Table 10: Initial Conditions for the Constrained Target-Cell-Limited Model
Initial Conditions Value Units

T0 5.9× 105 (Cells)mL−1

I0
c
pV0 (Cells)mL−1

V0 Estimated* (Cells)mL−1

The asterisk in Tables 9 and 10 denotes estimations that we carried our for the Constrained
Target-cell-limited model using the data from the patients from Section 2. In our estimations for
the model the value of δ does not apply for all time as is illustrated by the piece wise definition of
the death rate of infected cells. During the viral production and steady state stages, the value of δ
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will remain the same as previously determined, however, as mentioned previously, during the viral
decay we will use the estimation of the rate of viral decay α in order to solve for the death rate of
the infected cells.

5.2 Parameter Estimates

Table 11: Estimates for the
Rate of Viral Decay

Patient aind apop

1 0.481 0.478
2 0.542 0.530
3 0.606 0.495
4 0.661 0.523
5 0.507 0.467
6 0.884 0.637
7 0.367 0.394
8 0.423 0.441
9 0.529 0.505
10 1.019 0.675
11 0.377 0.510
12 0.223 0.347
13 0.899 0.639
14 0.896 0.697

Average 0.601 0.524

This hypothesis is supported since the estimate for the
rate of viral decay, as indicated by the value of δ dis-
played within Table 9, underestimates what we expect. As
shown in Ribeiro et al. [3], we expect the value of δ
to be approximately 0.4 − 0.83 days−1. Our δ value of
0.242 days−1 underestimates the true rate of viral decay dur-
ing the time between the peak viral load and the steady
state.

In an effort to achieve a better fit for the data, specifically dur-
ing the phase between the peak viral load and the steady state, we
constrained the standard target-cell-limited model as described in
section 5.1. In order to employ the new model, we first estimated
α, the rate of viral decay, for each one of the patients. In estimat-
ing α, we employed the same process we used to estimate r first
using Monolix in order to estimate the individual fits based off the
population, which we denote as αpop as well as the individual fits
achieved through a linear regression in MATLAB which we call
αind. Similar to our estimates of r, and using both Monolix and
MATLAB, we are able to easily determine the value for α both for

the population as well as individual fits. The resulting values for α are displayed in the table below.

As mentioned previously, we determined δ = β p
cT + α and fit the virus concentration data

using the constrained target-cell-limited model. The constrained target-cell-limited model seems
to capture the behavior of the virus during the viral decay phase much more effectively than the
standard target-cell-limited model as illustrated by the plots for patients 7 - 9 in Figure 10. We can
see from this figure that the constrained target-cell-limited model does a much better at predicting
the peak viral load in all three of the patients. Furthermore, the model seems to better predict
the viral population during the steady state; as we can see from the figure, the standard target-
cell-limited model suggests that the viral population varies significantly during this time period,
however, the data does not exhibit the same variance during this stage. Thus, while they both
exhibit similar dynamics during the viral growth stage, the constrained model is much better at
characterizing the peak viral load and decay phase as well as the long term behavior of the infection.

While the constrained target-cell-limited model appeared to better fit the data, the value for
δ achieved by the constrained target-cell-limited model is even smaller than that of the standard
target-cell-limited model at 0.154 days−1 vs 0.242 days−1, and thus still much smaller than the
value that we expected.
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Figure 21: The Target-Cell-Limited Model and Constrained Target-Cell-Limited Model Applied to Patients
7 - 9.

Table 12: Parameter Estimates for the Constrained Target-cell-limited model
Parameters Values s.e.lin r.s.e.lin

ppop 843.2079 312.499 37.06
dpop 0.00207 0.00076 36.81
δpop 0.15438 0.05351 34.66
V0pop 3.93387 0.30022 7.63

Figure 22: A visual representation of the behavior of delta ex-
hibited by the target-cell-limited model.

We suspect that there are multi-
ple reasons for this discrepancy. Pri-
marily, the smaller value for the in-
fected cell death rate results from the
fact that in the constrained model, δ
is only defined during the time pe-
riods before the peak viral load and
after the steady state as illustrated
in Figure 22 by the blue and yellow
sections of the graph. A small value
for δ during the initial viral expansion
stage prior to peak viral load seems
reasonable because this initial stage is
characterized by a lag in any produc-
tive immune response. Immune sys-
tem responses to HIV infection are
extremely complex and thus we an-
ticipate that during the viral growth
phase the immune system is not able
to mount a robust response. As a re-
sult, and thus the death of infected
cells is primarily a result of cytopathic
effects, which yield a smaller value of
δ than we would expect during an
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immune response. This argument is
strengthened by our knowledge from studies in [34] where they determined that the peak viral load
point is often the first time where a significant immune response is seen.

Furthermore, during the period between the peak viral load and the establishment of a steady
state, the value for δ is actually defined as β p

cT (t) + α. Thus, during this stage we know that since
all of the parameters are positive that δ ≥ α. The value of β p

cT (t) + α during that time is ≈ 0.78
days−1 meaning that δ will be greater than or equal to 0.78 days−1. This estimate is much closer
to the behavior that we expect during this phase. This stage where we use α to define δ in our
model is highlighted by the red portion of the Figure.

Furthermore, we know that HIV has a high affinity for mutation in order to evade an immune
response. Thus, after the virus reaches a steady state, as shown in Figure 22 by the stage high-
lighted in yellow, the value of δ should be expected to decrease again since the virus would be
undergoing significant mutations and thus is able to effectively escape the response. Therefore,
similar to the behavior during the viral expansion stage, we expect that the infected cell death is
due primarily to cytopahic effects, which would result in a lower natural death rate for the infected
cells, causing the numerical value for δ to decrease. Therefore, while the value for δ initially seems
much different than the quantity that we expect based on the literature, we can see that the biology
supports the case for a smaller δ value.

5.3 Sensitivity Analysis

The corresponding sensitivity systems for β, δ, and p for the constrained target-cell-limited model
are:

For β:

(4d) S′
Tβ(t) = −(

V (t)STβ(t) + SVβ(t)

)− dSTβ(t)

(4e) S′
Iβ(t) =

(
V (t)STβ(t) + SVβ(t)

)− g(t)I(t)− f(t)SIβ(t)

(4f) S′
Vβ(t) = pSIβ(t) − cSVβ(t)

where f(t) =

⎧⎪⎨
⎪⎩

δ 0 ≤ t ≤ t1

β p
cT (t) + α t1 ≤ t ≤ t2

δ t2 ≤ tmax

and g(t) =

⎧⎪⎨
⎪⎩

0 0 ≤ t ≤ t1
p
cT (t) + β p

cSTβ
t1 ≤ t ≤ t2

0 t2 ≤ tmax

For δ:

(4g) S′
Tδ(t) = −β

(
V (t)STδ(t) + SVδ(t)

)− dSTδ(t)
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(4h) S′
Iδ(t) = β

(
V (t)STδ(t) + SVδ(t)

)− g(t)I(t)− f(t)SIδ(t)

(4i) S′
Vδ(t) = pSIδ(t) − cSVδ(t)

where f(t) =

⎧⎪⎨
⎪⎩

δ 0 ≤ t ≤ t1

β p
cT (t) + α t1 ≤ t ≤ t2

δ t2 ≤ tmax

and g(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t ≤ t1

β p
cSTδ

t1 ≤ t ≤ t2

1 t2 ≤ tmax

For p:

(4j) S′
Tp(t) = −β

(
V (t)STp(t) + SVp(t)

)− dSTp(t)

(4k) S′
Ip(t) = β

(
V (t)STp(t) + SVp(t)

)− g(t)I(t)− f(t)SIp(t)

(4l) S′
Vp(t) = SIp(t) − cSVp(t)

where f(t) =

⎧⎪⎨
⎪⎩

δ 0 ≤ t ≤ t1

β p
cT (t) + α t1 ≤ t ≤ t2

δ t2 ≤ tmax

and g(t) =

⎧⎪⎨
⎪⎩

0 0 ≤ t ≤ t1
β
c T (t) + β p

cSTp t1 ≤ t ≤ t2

0 t2 ≤ tmax

Examining the sensitivity of the system resulting from changes in the same three parameters we
did for the standard target-cell-limited model (β, the rate of infection, δ, the death rate of infected
cells, and p, the production rate of the virus), Figure 23 suggests that changes in the parameters for
the constrained target-cell-limited model do not have a large effect on the behavior of the system.
This is illustrated by the fact that as the parameters change, the values for the rate of viral pro-
duction, peak viral load, rate of viral decay, as well as steady state values remain relatively constant.

In addition, the dynamics during the interim between these stages seem to be consistent and
they have the same basic functional form without significant deviation or variation. Patient 13
shows the most change in behavior as the parameters are varied, specifically with regard to δ and
β, however, this change is certainly not to the same extent as we saw for patient 13 when exam-
ining the standard target-cell-limited model. In fact the limited variation that does occur within
the models, only impacts the viral population after the steady state is achieved. Prior to achieving
the steady state there is little variance within the population as the changes in parameters occur.
Thus, the constrained target-cell-limited model appears to be robust and is not extremely sensitive
to parameter inputs.

However, upon further examination of the other patients in the study, it becomes clear that the
changes in parameters have a massive impact on the behavior of the system with respect to the viral
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Figure 23: The effect of varying the parameters β, δ, and p in patients 1, 12, and 13.

load. For instance, with regard to patients 4 and 11, the behavior begins to change dramatically
as illustrated in figure 24. We can see that specifically, when small changes are made to the value
of β, the behavior of the model changes significantly as the parameter is varied.

Furthermore, we see that while the rate of viral production, peak viral load, and rate of viral
decay remain relatively the same during the change in parameter values, the behavior during the
steady state is dramatically different. This suggests that the model is extremely sensitive to the
value of the parameters with respect to these patients.

In addition, the model appears to be sensitive to changes in δ and even p, something that we
did not see in the standard model. Yet, similar to the patients we examined with the constrained
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Figure 24: The effect of varying the parameters β, δ, and p.

target-cell-limited model previously, this sensitivity exhibited by the model seems to only be oc-
curring during the steady state. Prior to that time, the model is relatively robust. This is likely a
result of careful estimation of the rate of viral production and rate of viral decay which are easily
estimated with a large degree of confidence and certainty and implemented in the constrained model.

This difference in stability for the constrained model when compared to the standard model
likely results from the manner in which we defined the parameters. Specifically with respect to the
infected cell death rate, we define δ during a time where the death rate would likely be extremely
difficult to estimate as a result of having to distinguish between the natural death rate and any sort
of lagged immune response. This sensitivity also permeates that for the other parameters, which
explains why all three (β, δ, and p) exhibit the sensitivity characteristic in this model.
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6 Simple Immune Model

The Simple Immune Model was proposed by in order to include the effects of a cell-mediated
immune response. The model extends the target-cell-limited model by accounting for the loss of
infected cells during the viral transient peak by the proliferation of an immune response, specifically
represented by the growth of an immune effector cell population and proliferation of a robust
immune response. The response is dependent upon the interaction between infected cells and the
immune cells via michaelis-menten dynamics. Furthermore, this response allows for the possible
early control of the virus. Since we added an additional compartment of the immune response, the
Simple Immune model considers four distinct populations which are denoted:

T (t): concentration of target cells at time t,
I(t): concentration of infected cells at time t,
V (t): concentration of free virus at time t,
E(t): concentration of immune effector cells at time t.

The model is a system of four nonlinear ordinary differential equations denoted:

(5a)
dT

dt
= λ− βV (t)T (t)− dT (t)

(5b)
dI

dt
= βV (t)T (t)− δI(t)− kEE(t)I(t)

(5c)
dV

dt
= pI(t)− cV (t)

(5d)
dE

dt
= kEE(t)I(t)− dEE(t)

With initial conditions T (0) = T0, I(0) = I0, V (0) = V0, E(0) = E0. Here effector cells or cytotoxic
T-lymphocytes can serve to represent short-lived cells which have cytopathic effects (for example,
CD8+ T-cells as we discussed in section 1.1.2). In this model kE is the constant rate at which
immune effector cells are stimulated and dE is the death rate of the effector cells. The other pa-
rameters remain the same as defined previously; however, we conduct simulations .

6.1 Model Development

Equation 5a models the dynamics of the uninfected cellular population. The development of this
equation is synonymous with that for the standard target-cell-limited model.

Equation 5b represents the dynamics of infected cells. The equation for the rate of change of the
infected cell population is dictated by both the rate of infection and death rate. The equation can
be represented as:

Rate of change of infected cell population = (Infection rate) - (Immune Interaction rate) - (Death rate)

Infection rate: This term is the same as the infection rate term in the target cell differential
equation with a reversal in sign. This is a result of the fact that the only way that infected cells can
be created is by infecting previously uninfected target cells [14]. The human immune system does
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not naturally produce infected cells; thus, the term remains the same as previously determined.
Interaction rate: Immune effector cells are activated when contact between a effector cell and

an infected cell is made within the infected host. This interaction causes the infected cell to be re-
moved from the infected cell population since it no longer maintains the ability to infect previously
uninfected target cells. The interaction rate for the activated effector cells, kE , can be assumed to
be proportional to the product of the CTL and infected cell populations which is consistent with
Michaelis-Menten interaction dynamics [27].

Death rate: Similar to target cell death, infected cells are cleared by the immune system at a
rate, δ, proportional to the infected cell population [14].

Equation 5c mathematically describes the dynamics of the virus cell population. The develop-
ment of this equation is synonymous with that for the standard Target-cell-limited model.

Equation 5d highlights the dynamics of immune effector cells. The effector cell population is
composed of production rate and death rate. The overall equation is:

Rate of change of Effector cell population = (Production rate) - (Death rate)

Production rate: Effector cells are activated when contact between the effector cell and an infected
cell is made within the infected host. Thus, the production rate, kE , can be assumed to be propor-
tional to the product of the effector cell and infected cell populations and is the same as in equation
5b with a reversal in sign.

Death rate: Similar to target cell death, effector cells are cleared by the immune system at a
rate, dE , proportional to the effector cell population.

It is important to note that all of the model parameters are presumed to be positive. In addition,
there are two biologically reasonable assumptions we are able to make with regard to the values of
parameters in relation to one another. Notably, it is biologically reasonable to assume that infected
cells have a higher death rate than target cells, namely α ≥ μ. Furthermore, we are also able to
assume that the death rate of infected cells is greater than the natural death rate of CTLs, and
thus α ≥ δ.

6.2 Existence and Uniqueness of Solutions

Prior to conducting an in–depth analysis of the model, it is crucial to show that the solutions
to the initial-value problem exist and are unique.

6.2.1 Positivity and Boundedness

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0, I(0) > 0,
V (0) > 0, E(0) > 0 then for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will remain positive in R

4
+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be positive in
R

4
+. We know that all of the parameters used in the system are positive. Thus, we can place lower

bounds on each of the equations given in the model. Thus,

dT

dt
= λ− dT (t)− βV (t)T (t) ≥ −dT (t)− βV (t)T (t)
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dI

dt
= βV (t)T (t)− δI(t)− kEI(t)E(t) ≥ −δI(t)− kEI(t)E(t)

dV

dt
= pI(t)− cV (t) ≥ −cV (t)

dE

dt
= kEE(t)I(t)− dEE(t) ≥ −dEE(t)

Through basic differential equations methods we can resolve the inequalities and produce:

T (t) ≥ e−dt−β
R

V (t)dt ≥ 0

I(t) ≥ e−δt−kE

R
E(t)dt ≥ 0

V (t) ≥ e−ct ≥ 0
E(t) ≥ e−dEt ≥ 0

Thus, for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be positive and remain in R
4
+.

Lemma (Boundedness). There exists an TM , IM , VM , EM > 0 such that for T (t), I(t), I(t), E(t)
lim supt→∞

(
T (t)

)
≤ TM , lim supt→∞

(
I(t)

)
≤ IM , lim supt→∞

(
V (t)

)
≤ VM , lim supt→∞

(
E(t)

)
≤

EM for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be bounded.
We know that all of the constants used in the system are positive.

dT

dt
+

dI

dt
+

dE

dt
= λ− dT (t)− δI(t)− dEE(t)

Since all of the constants are positive,
d(T + I + E)

dt
≤ λ−min{d, δ, dE}(T + I + E)(t)

which implies,
(T + I + E)(t) ≤ λ

min{d, δ, dE} + c0e
−min{d,δ,dE}t

taking the limsup of both sides,

lim sup
t→∞

(T + I + E)(t) ≤ lim sup
t→∞

( λ

min{d, δ, dE} + c0e
−min{d,δ,dE}t

)
=

λ

min{d, δ, dE}
So, choose

TM = IM = EM =
λ

min{d, δ, dE}
Thus, (T + I + E)(t) is bounded, so T (t), I(t), and E(t) are all bounded since

T (t), I(t), E(t) ≤ (T + I + E)(t).

So,
T (t) ≤ TM , I(t) ≤ IM , and E(t) ≤ EM for all t ∈ [0, t0]

Furthermore, since all of the constants are positive, we can place an upper bound on
dV

dt
so,

dV

dt
= pI(t)− eV (t) ≤ pI(t)

Therefore, we can choose
VM = pIM

Thus,
V (t) ≤ pIM = VM .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that V (t) is bounded for all t ∈ [0, t0].



6 SIMPLE IMMUNE MODEL 71

Theorem 6 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0,
I(0) > 0, V (0) > 0, E(0) > 0 then ∀t ∈ R T (t), I(t), V (t), E(t) will exist in R

4
+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =

⎡
⎢⎢⎣

T (t)
I(t)
V (t)
E(t)

⎤
⎥⎥⎦ and f(x) =

⎡
⎢⎢⎣

λ− dT (t)− βV (t)T (t)
βV (t)T (t)− δI(t)− kEI(t)T (t)

pI(t)− cV (t)
kEI(t)T (t)− dET (t)

⎤
⎥⎥⎦

Note that f has a continuous derivative on R
4 and thus, f is locally Lipschitz in R

4. Hence, by
the Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas
proved on positivity and boundedness of solutions, we know that there exists a unique, positive,
and bounded solution to the ordinary differential equations given in 5(a)− 5(d).

6.3 Local Stability Analysis

6.3.1 Critical Points

The model has three biologically relevant equilibria denoted Pn = (T, I, V, E) for n = 1, 2, 3:

P1 =
(λ

d
, 0, 0, 0

)

P2 =
( δc

pβ
,
pβλ− δcd

pδβ
,
pβλ− δcd

δβc
, 0

)

P3 =
( cλkE

pβdE + cdkE
,
dE

kE
,
pdE

ckE
,
−pδβc + pβλkE − δckEd

kE(pβdE + cdkE)

)

We characterize P1 as a viral free (or viral clearance) equilibrium; this means that as t → ∞,
the virus will be eliminated from the body. In addition, it represents the point where the infection
will be cleared since both V = 0 and I = 0. P2 and P3 describe the persistence of the virus, and
thus can be characterized as a viral persistence equilibria. At these values, the virus will remain in
the system as t → ∞ and the infection will persist with the patient. The equilibria also describe
the persistence of an immune response. We denote that at P2 and P1 the immune response is either
not required, or may even be suppressed as t →∞ since E = 0, while at P3 the immune system’s
response remains present for all time, even after the virus population reaches a stable level since
E �= 0. Notably, P3 is the only equilibrium which describes the co-existence of virus and immune
effector cells as t → ∞. In addition, it is important to denote that all of the equilibria have a
persistence of uninfected cells.

6.3.2 Linearization and the Jacobian

The Jacobian for the linearized system is:

J(T, I, V, E) =

⎡
⎢⎢⎣

V β − d 0 −Tβ 0
V β δ − EkE Tβ −IkE

0 p −c 0
0 EkE 0 −dE + IkE

⎤
⎥⎥⎦
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6.3.3 Derivation of R0 and R1

The characteristic polynomial is defined as the polynomial side of the characteristic equation,
det(A− λI) = 0 where A is a square matrix, I is the identity matrix, and λ is an eigenvalue. The
roots of the characteristic polynomial of the Jacobian will tend to depend on several parameters
known as threshold parameters. The values of these parameters, sometimes called the reproductive
constants, influence and determine the stability of the system.

We can define:

R0 =
pβλ

δcd

R1 =
pβλkE

δ(ckEd + pβdE)

to be the reproductive constants of the system. Biologically, R0 represents the average number
of infected cells produced by an initially infected cell over its lifetime [5]. The value of R0 is a
well established norm when discussing viral infections [5]. As previously determined, the R0 value
associated with HIV is generally accepted to range from 3 to 6 [14]. This value depends upon the
parameters of the individual who is infected, but also varies based on the geographical location
of the disease. R1 translates the notion of viral reproductive constants to the immune system
response. Thus, R1 represents the number of infected cells that a single immune cell (CD8 or CTL
in the case of our model) is able to address. The interpretation of R1 will be discussed in greater
detail in a later section.

Three theorems will be presented to highlight the relationship between the two reproductive
constants and the local asymptotic stability of the equilibria. Thus, we are able to examine the
values of R0, R1 and a few other simple expressions to determine whether viral persistence or viral
extinction occurs as t → ∞. As a result, we may be able to predict the persistence of the HIV
upon initial infection simply by determining the values of these expressions. In addition, we will
also be able to determine whether or not the immune response is suppressed or continues to persist
during the course of the infection.

6.3.4 Stability Analysis for P1

The Jacobian evaluated at P1 = (
λ

d
, 0, 0, 0) becomes :

J1 =

⎡
⎢⎢⎣
−d 0 −βλ

d 0
0 δ βλ

d 0
0 p −c 0
0 0 0 −dE

⎤
⎥⎥⎦

Furthermore, the characteristic equation for P1 is

−1
d
(−x− dE)(x + d)(−pβλ + x2d + xδd + xcd + δcd) = 0

From the characteristic equation we can define:
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a1 = δ + c + dE + d

a2 = δ(c + dE + d)− βpλ

d
+ c(dE + d) + dEd

a3 =
d(δ(c(dE + d) + dEd) + cdEd)− βpλ(dE + d)

d
a4 = δcdEd− βpdEλ

such that

−1
d
(−x− dE)(x + d)(−pβλ + x2d + xδd + xcd + δcd) = x4 + a1x

3 + a2x
2 + a3x + a4

Theorem 7 (Local Asymptotic Stability of P1). For the viral extinction equilibrium (P1) given by

(T, I, V, E) = (
λ

d
, 0, 0, 0)

if R0 < 1, then P1 is stable; however if R0 > 1, then P1 is unstable.

Proof. We will use the Routh-Hurwitz Criteria and the values of a1, a2, a3, and a4 to derive the
stability of P1.

We know that all of the parameters are positive. Therefore, a1 = δ + c + dE + d is clearly > 0.

We can write a2 as,

a2 = (1−R0)
1

δcd

(
(δ + c)d(dE + d) + dEd2

)
Thus, if R0 < 1, then a2 > 0 since all the parameters are positive. However, if R0 > 1, then clearly
a2 < 0.

Furthermore, a3 can be represented by,

a3 = (1−R0)(dE + d)
1

δdEd

(
dEd(δ + c)

)

Thus, if R0 < 1, then a3 > 0; however, if R0 > 1, then a3 < 0.

In addition,

a4 = (1−R0)
dE

δcd
Thus, if R0 < 1, then a4 > 0; however, if R0 > 1, then a4 < 0.

Finally,

a1a2a3− (a2
3 + a2

1a4) =
1
d2

(
(δ + c)(dE + d)(1−R0 + δdEd + cdEd + d2

Ed)(1−R0 + δd2 + cd2 + d3)
)

Thus, if R0 < 1, then a1a2a3 − (a2
3 + a2

1a4) > 0. and therefore, a1a2a3 > a2
3 + a2

1a4.

As a result, if R0 < 1 all of the conditions necessary for stability are met and P1 is stable. However,
if R0 > 1, then a2, a3, a4 < 0 and P1 is unstable.
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6.3.5 Stability Analysis for P2

The Jacobian evaluated at P2 =
( δc

pβ
,
pβλ− δcd

pδβ
,
pβλ− δcd

δβc
, 0

)
is:

J2 =

⎡
⎢⎢⎢⎣
−d− pβλ−δcd

δc 0 − δλ
p 0

pβλ−δcd
δc δ δλ

p − (pβλ−δcd)kE

pδβ

0 p −c 0
0 0 0 −dE + (pβλ−δcd)kE

pδβ

⎤
⎥⎥⎥⎦

Furthermore, the characteristic equation for P2 is

− 1
p2δ2βc2

(p2δ(x+δ)β(−x−c)c(xδc+pβλ)−p(−pxδ3βc3−pδ3βc3d))
(
−x−dE+

(pβλ− δcd)kE

pδβ

)
= 0

Theorem 8 (Local Asymptotic Stability of P2). For the viral persistence equilibrium and immune
suppressive equilibrium (P2) given by

(T, I, V, E) =
( δc

pβ
,
pβλ− δcd

pδβ
,
pβλ− δcd

δβc
, 0

)

P2 is stable iff P2 exists and R1 < 1.

Proof. In order for P2 to be defined, R0 ≥ 1, since if R0 < 1, pβλ − δdc < 0 and P2 will not be
biologically reasonable.

One eigenvalue of J2 is

x1 =
pβλkE − (pδβdE + δcdkE)

pδβ

Thus, we can simplify the characteristic equation.

As a result the remaining eigenvalues are solutions to the equation,

x3 + x2 δ2c + δc2 + pβλ

δc
+ x

pβ(δ + c)
δc

+ pβλ− δcd = 0

We will then use the Routh-Hurwitz criteria to prove that all of the roots are negative given R0 > 1
and R1 < 1. From the characteristic equation we obtain,

a1 =
δ2c + δc2 + pβλ

δc

a2 =
pβ(δ + c)

δc
a3 = pβλ− δcd

We know a1, a2 > 0 since all of the parameters are positive.

Furthermore, we can denote:

a3 = pβλ− δcd = (R0 − 1)
1

δcd
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Thus, if R0 > 1 then a3 > 0, however, if R0 < 1 then a3 < 0 and P2 is unstable.

In addition, we can define:

a1a2 − a3 = pβλ +
pβδλ

c
+

pβcλ

δ
+

p2β2λ2

δc2
+

p2β2λ2

δ2c
+ δcd

Also, since all of the parameter are positive a1a2 − a3 > 0 which implies that a1a2 > a3.

6.3.6 Stability Analysis for P3

The Jacobian evaluated at P3 =
( cλkE

pβdE + cdkE
,
dE

kE
,
pdE

ckE
,
−pδβc + pβλkE − δckEd

kE(pβdE + cdkE)

)
is:

J3 =

⎡
⎢⎢⎢⎣
−d− pβdE

kEc 0 − βcλkE
pβdE+ckEd 0

pβdE
kEc δ − −pδβdE+pβλkE−δcdkE

pβdE+cdkE

βcλkE
pβdE+cdkE

−dE

0 p −c 0
0 −pδβdE+pβλkE−δcdkE

pβdE+ckEd 0 0

⎤
⎥⎥⎥⎦

Furthermore, the characteristic equation for P3 is

−x(βpc2λk2
E(d+x)−(δ+x)(c+x)(βpdE+cdkE)(βpdE+ckE(d+x)))−kE(c+x)(βpdE+ckE(d+x))(δcdkE+βp(δdE−λkE))

ckE(βpdE+cdkE) = 0

Therefore,

a1 =
β2p2d2

E + c2dk2
E(c + d) + βpckE(cdE + 2dEd + λkE)

ckE(βpdE + cdkE)

a2 =
c2dk2

E(cd− δdE) + β2p2dE(cdE + λkE) + βpckE

(−δd2
E + 2cdEd + λkE(dE + d)

)
ckE(βpdE + cdkE)

a3 =
dE

(−δc2dk2
E(c + d) + β2p2

(
λkE(c + dE)− δd2

E

)
+ βpckE(λkE(c + d)− δdE(c + 2d))

)
ckE(βpdE + cdkE)

a4 = dE

(
βp

(
λ− δdE

kE

)
− δcd

)

Theorem 9 (Local Asymptotic Stability of P3). For the viral persistence equilibrium and immune
response persistence equilibrium (P3) given by

(T, I, V, E) =
( cλkE

pβdE + cdkE
,
dE

kE
,
pdE

ckE
,
−pδβc + pβλkE − δckEd

kE(pβdE + cdkE)

)

If R1 > 1, R0 > dE
d , pβ > δkE, λ(c + dE) > δd2

E then P3 is stable.

Proof. We know that since all the parameters are positive, a1 > 0.

Taking the numerator of a2, we want

dE(−δc2dk2
E(c + d) + β2p2(λkE(c + dE)− δd2

E) + βpckE(λkE(c + d)− δdE(c + 2d))) > 0
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Thus, if

c3d2k2
E + β2p2dE(cdE + λkE) + βpckE(2cdEd + λkE(dE + d)) > δcdEkE(βpdE + cdkE)

then a2 > 0.

Since
pβλ

δcdE
=

d

dE
R0

if

R0 >
dE

d

then
pβλ > δcdE

Thus, if pβ > δkE and R0 > dE
d then pβλ > δcdE .

Therefore, if R0 > dE
d and λ(c + dE) > δd2

E then a2 > 0.

Considering the numerator of a3, we want to prove that

dE(−δc2dk2
E(c + d) + β2p2(λkE(c + dE)− δd2

E) + βpckE(λkE(c + d)− δdE(c + 2d))) > 0

Additionally, if

βpdEλkE(βp(c + dE) + ckE(c + d)) > δdE

(
β2p2d2

E + c2dk2
E(c + d) + βpcdEkE(c + 2d)

)

then a3 > 0. Thus, if R1 > 1, and λkE(c + dE) > δd2
E , then a3 > 0.

Furthermore, a4 can be written as

a4 =
dE

kE(pδβdE + δcdkE)
(R1 − 1)

Thus, if R1 > 1 then a4 > 0; however, if R1 < 1, then a4 < 0 and P3 is unstable.

The expression for a1a2a3 − (a2
3 + a2

1a4) can be found in the appendix. However, if pβ >
δkE , pβλ > δdEc, R1 > 1, R0 > 1, and λkE(c + dE) > d2

Eδ, then a1a2a3− (a2
3 + a2

1a4) > 0 and thus,
a1a2a3 > (a2

3 + a2
1a4).

6.4 Parameter Estimates and Numerical Simulation

In estimating the parameters for the simple immune model, we adopted the same approach
as we did for both the Target-cell-limited model and constrained target-cell-limited model where
we will use the viral expansion rate, r, to solve for the infection rate, β. Thus, our new system of
differential equations becomes:
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(5a)
dT

dt
= λ− dT (t)− (r + δ)

c

pT0
V (t)T (t)

(5b)
dI

dt
= (r + δ)

c

pT0
V (t)T (t)− δI(t)− kEE(t)I(t)

(5c)
dV

dt
= pI(t)− cV (t)

(5d)
dE

dt
= kEE(t)I(t)− dEE(t)

Table 13: Parameter Estimations for the Simple
Immune Model
Parameter Value s.e. lin r.s.e. lin

ppop 1671.071 1391.479 83.27
dpop 0.00715 0.00146 20.42
δpop 0.60062 0.38926 64.81
V0pop 3.96462 0.27561 6.95
kEpop 0.00069 0.08004 11673.81
dEpop 2.6109 85.00994 3255.96
ρpop 0.0172 2.07614 12072.52

From Table 13 we can see that the estimates
given for the death rate of the target cells,
d, and the initial virus population V0 for the
simple immune model are similar to those for
the target cell, and the constrained target-cell-
limited model. For instance, the initial pop-
ulation of virus is approximately 103.9 virions

mL
and the death rate of target cells is about 0.007
days−1. However, the rate of viral production,
p, as well as the death rate of infected cells, δ,

are quite different in the three models. For instance, the rate of viral production, p is 1671.071
days−1 for the simple immune model, whereas it is much smaller 374.76 days−1 for the standard
Target-Cell-Limited model. This discrepancy is likely due to the increased impact that the immune
system has on the growth of the virus which is not only reflected in the immune population, but is
also reflected within the growth rate for the virus which is dominated by the parameter p. This is
because the immune system directly targets the growth of the virus, and as a result the parameter
must be larger to compensate for the same amount of growth in the presence of an immune response
as when the immune response is not included within the effects of the model. Thus, it seems very
reasonable that we would expect the value of the rate of viral production to be much larger for the
simple immune model.

Figure 25: Simulation of the Simple Immune Model.

Furthermore, it is interesting to
note that the value for δ is approx-
imately 0.60 days−1 which is much
more consistent with the literature
and what we expect from all of
the models, which is much different
from the results achieved by the both
the target-cell-limited as well as the
constrained target-cell-limited mod-
els. However, despite the fact that
the parameter is so close to what we
expect, the plot seems to suggest that
the model is still underestimating the
rate of viral decay. What is further
surprising is that we would expect
this value to be smaller than what the
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literature suggests for the standard death rate of infected cells since the immune system would be
partaking in the killing of the infected cells, thus making the natural rate appear smaller in nature.
Furthermore, Figure 25 suggests that the model exhibits qualitative characteristics that are very
similar to the standard target cell model and is overall not a fantastic fit of the data. For instance,
the model does not do a good job estimating the peak viral load; in fact, it significantly underes-
timates the peak load. In addition, the model seems to suggest that there are major oscillations
after the patient achieves a steady state viral load. This behavior is very similar to that which is
exhibited by the target-cell-limited model and, as mentioned earlier, somewhat inconsistent with
what we are seeing from the data.

6.5 Sensitivity Analysis

Similar to the sensitivity analysis we conducted for the target cell and constrained Target-
Cell-Limited models, we examined the sensitivity properties of the simple immune model. The
corresponding sensitivity systems with respect to β, δ, and p are shown below.

For β:

(5i) S′
Tβ(t) = −(

V (t)STbeta(t) + SVβ(t)

)− d(STβ(t))

(5j) S′
Iβ(t) =

(
V (t)STβ(t) + SVβ(t)

)− δSIβ(t) − kE

(
E(t)SIβ(t) + I(t)SEβ

)

(5k) S′
Vβ(t) = pSIβ(t) − cSVβ(t)

(5l) S′
Eβ(t) = kE

(
E(t)SIβ(t) + I(t)SEβ

)− dE(SEβ(t))

For δ:

(5m) S′
Tδ(t) = −β

(
V (t)STδ(t) + SVδ(t)

)− d(STδ(t))

(5n) S′
Iδ(t) = β

(
V (t)STδ(t) + SVδ(t)

)− SIδ(t) − kE

(
E(t)SIδ(t) + I(t)SEδ

)

(5o) S′
Vδ(t) = pSIδ(t) − cSVδ(t)

(5p) S′
Eδ(t) = kE

(
E(t)SIδ(t) + I(t)SEδ

)− dE(SEδ(t))

For p:

(5q) S′
Tp(t) = −β

(
V (t)STp(t) + SVp(t)

)− d(STp(t))

(5r) S′
Ip(t) = β

(
V (t)STp(t) + SVp(t)

)− δSIp(t) − kE

(
E(t)SIp(t) + I(t)SEp

)

(5s) S′
Vp(t) = SIp(t) − cSVp(t)

(5t) S′
Ep(t) = kE

(
E(t)SIp(t) + I(t)SEp

)− dE(SEp(t))
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From Figure 26 we can see that the Simple Immune Model is very similar in terms of sensitivity
resulting from changes in the parameters, specifically for β, δ, and p, to the target-cell-limited
model. This is illustrated by the fact that during the viral production phases of infection the value
of the virus remains relatively constant for all three of the parameters. During the viral decay
phase, there is variation in the population of the virus, however, it is most pronounced for the
parameters δ and β. Also similar to the target-cell-limited model, increasing the death rate of the
infected cells decreases the slope for the rate of viral decay, however the differences are smaller in
magnitude for the simple immune model than the target-cell-limited. Most of the variation due to
changes in the parameters results in small variation during the steady state, as is consistent with
the target-cell-limited model.

Figure 26: The effect of varying the parameters β, δ, and p.

Yet, a closer examination of the sensitivity with regards to the infected cell death rate δ reveals
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that when compared with the standard target-cell-limited model, the value of the infected cell death
rate for the simple immune model seems to have a smaller effect on the rate of viral decay. This
suggests that we would not necessarily expect the real rate of viral decay to be much larger than
our estimate, 0.60 days−1, which corresponds to the value found in the literature. However, the
value of δ does have a very large impact on the magnitude of the oscillations. For instance, for
larger values of δ, the viral load achieves a much smaller value at the end of the decay phase before
returning to the steady state equilibrium.
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7 Extended Model with Immune Control

The Extended Model with Immune control was proposed by D. Burg et. al [3] in order to
include the effects of a cell-mediated immune response. The model extends the target-cell-limited
model by accounting for the loss of infected cells during the viral transient peak similar to the
simple immune model, but exhibits more complex dynamics than the simple model. The response
is dependent upon the infected cell frequency via a saturation function and allows for the possible
early control of the virus. The model considers four distinct populations which are denoted:

T (t): concentration of target cells at time t,
I(t): concentration of infected cells at time t,
V (t): concentration of free virus at time t,
E(t): concentration of immune effector cells at time t.

The model is a system of four nonlinear ordinary differential equations denoted:

(6a)
dT

dt
= λ− βV (t)T (t)− dT (t)

(6b)
dI

dt
= βV (t)T (t)− (

αd + k0E(t)
)
I(t)

(6c)
dV

dt
= pI(t)− cV (t)

(6d)
dE

dt
= aE

I(t)
I(t) + θ

− dEE(t)

With initial conditions T (0) = T0, I(0) = I0, V (0) = V0, E(0) = E0. Here effector cells can
serve to represent short-lived cells which have cytopathic effects (for example, CD8+ T-cells or
Cytotoxic T-lymphocytes, CTLs). In this model aE is the constant rate at which immune effector
cells are stimulated, θ is the half-maximal stimulation threshold, and dE is the death rate of the
effector cells. All of the other parameters remain the same as previously defined in the other models.

7.1 Model Development

Equation 6a models the dynamics of the uninfected cellular population. The development of this
equation is synonymous with that for the standard target-cell-limited model.

Equation 6b represents the dynamics of infected cells. The equation for the rate of change of
the infected cell population is dictated by both the rate of infection and death rate. The equation
can be represented as:

Rate of change of infected cell population = (Infection rate) - (Immune Interaction rate) - (Death rate)

Infection rate: This term is the same as we previously defined in the other models.
Interaction rate: Immune effector cells are activated when contact between a effector cell and

an infected cell is made within the infected host. This interaction causes the infected cell to be re-
moved from the infected cell population since it no longer maintains the ability to infect previously
uninfected target cells. As mentioned previously, the interaction rate for the activated effector cells,
k0, can be assumed to be proportional to the product of the CTL and infected cell populations
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which is consistent with Michaelis-Menten interaction dynamics [27].
Death rate: Similar to target cell death, infected cells are cleared by the immune system at a

rate, proportional to the infected cell population [14].

Equation 6c mathematically describes the dynamics of the virus cell population. The develop-
ment of this equation is synonymous with that for the standard Target-cell-limited model, however,
the parameter δ is replaced by the expression αd.

Equation 6d highlights the dynamics of immune effector cells. The effector cell population is
composed of production rate and death rate. The overall equation is:

Rate of change of Effector cell population = (Production rate) - (Death rate)

Production rate: Effector cells are activated when contact between the effector cell and an infected
cell is made within the infected host. However, the dynamics for the production of effector cells
is much more complicated in the extended immune model than the simple immune model. This is
because the development of an immune response (and the production of effector cells) is dependent
upon the infected cell frequency via a saturation function I(t)

I(t)+θ .
Death rate: Similar to target cell death, effector cells are cleared by the immune system at a

rate, dE , proportional to the effector cell population.

It is important to note that all of the model parameters are presumed to be positive. In addition,
there are two biologically reasonable assumptions we are able to make with regard to the values of
parameters in relation to one another. Notably, it is biologically reasonable to assume that infected
cells have a higher death rate than target cells, namely α ≥ μ. Furthermore, we are also able to
assume that the death rate of infected cells is greater than the natural death rate of CTLs, and
thus α ≥ δ.

7.2 Existence and Uniqueness

7.2.1 Positivity and Boundedness

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0, I(0) > 0,
V (0) > 0, E(0) > 0 then for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will remain positive in R

4
+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be positive in
R

4
+. We know that all of the parameters used in the system are positive. Thus, we can place lower

bounds on each of the equations given in the model. Thus,

dT

dt
= λ− dT (t)− βV (t)T (t) ≥ −dT (t)− βV (t)T (t)

dI

dt
= βV (t)T (t)− δI(t)− kEI(t)E(t) ≥ −δI(t)− k0I(t)E(t)

dV

dt
= pI(t)− cV (t) ≥ −cV (t)

dE

dt
= aE

I(t)
I(t) + θ

− dEE(t) ≥ −dEE(t)
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Through basic differential equations methods we can resolve the inequalities and produce:

T (t) ≥ e−dt−β
R

V (t)dt ≥ 0

I(t) ≥ e−δt−k0

R
E(t)dt ≥ 0

V (t) ≥ e−ct ≥ 0
E(t) ≥ e−dEt ≥ 0

Thus, for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be positive and remain in R
4
+.

Lemma (Boundedness). There exists an TM , IM , VM , EM > 0 such that for T (t), I(t), I(t), E(t)
lim supt→∞

(
X(t)

)
≤ TM , lim supt→∞

(
I(t)

)
≤ IM , lim supt→∞

(
V (t)

)
≤ VM , lim supt→∞

(
E(t)

)
≤

EM for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t) will be bounded.
We know that all of the constants used in the system are positive. In addition, we can assume that
θ > 1 []. Thus, we know that aEI(t) > aE

I(t)
I(t)+θ .

As a result,

dT

dt
+

dI

dt
+

dE

dt
+ k0E(t)I(t) = λ− dT (t)− αdI(t)− dEE(t) ≥ dT

dt
+

dI

dt
+

dE

dt

Since all of the constants are positive,
d(T + I + E)

dt
≤ λ−min{d, αd, dE}(T + I + E)(t)

which implies,
(T + I + E)(t) ≤ λ

min{d, αd, dE} + c0e
−min{d,αd,dE}t

taking the limsup of both sides,

lim sup
t→∞

(T + I + E)(t) ≤ lim sup
t→∞

( λ

min{d, αd, dE} + c0e
−min{d,αd,dE}t

)
=

λ

min{d, αd, dE}
So, choose

TM = IM = EM =
λ

min{d, αd, dE}
Thus, (T + I + E)(t) is bounded, so T (t), I(t), and E(t) are all bounded since

T (t), I(t), E(t) ≤ (T + I + E)(t).

So,
T (t) ≤ TM , I(t) ≤ IM , and E(t) ≤ EM for all t ∈ [0, t0]

Furthermore, since all of the constants are positive, we can place an upper bound on
dV

dt
so,

dV

dt
= pI(t)− cV (t) ≤ pI(t)

Therefore, we can choose
VM = pIM

Thus,
V (t) ≤ pIM = VM .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that V (t) is bounded for all t ∈ [0, t0].



7 EXTENDED MODEL WITH IMMUNE CONTROL 84

Theorem 10 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0,
I(0) > 0, V (0) > 0, E(0) > 0 then ∀t ∈ R T (t), I(t), V (t), E(t) will exist in R

4
+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =

⎡
⎢⎢⎣

T (t)
I(t)
V (t)
E(t)

⎤
⎥⎥⎦ and f(x) =

⎡
⎢⎢⎢⎢⎣

λ− dT (t)− βV (t)T (t)
βV (t)T (t)−

(
αd + k0E(t)

)
I(t)

pI(t)− cV (t)
aE

I(t)
θ+I(t) − dEE(t)

⎤
⎥⎥⎥⎥⎦

Note that f has a continuous derivative on R
5 and thus, f is locally Lipschitz in R

5. Hence, by
the Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas
proved on positivity and boundedness of solutions, we know that there exists a unique, positive,
and bounded solution to the ordinary differential equations given in 6(a)− 6(d).

7.3 Simplified Extended Model

Since data on the number of effector cells is not available, there are a large number of parameters
that are currently not estimated. Thus, we adopt the approach from D. Burg et al. [3] and simplify
the extended model (equations 6a - 6d) by using a quasi steady state approximation over the
Immune Effector cell population. This assumption assumes that the dynamics of the effector cell
population is faster than the time course of acute HIV resolution [3] and that the population of
effector cells is proportional to the infected cell population. The result is the simplified extended
model (equations 7a - 7c) shown below.

Using a quasi-steady state approximation for dE
dt ,

dE
dt = 0 =⇒ aE

I
θ+I = dEE =⇒ E = aE

dE

I
θ+I =⇒ dI

dt = βV T −
(
αd + k0

aE
dE

I
θ+I

)
I.

Let k = k0
aE
dE

.

Then,

(7a)
dT

dt
= λ− dT (t)− βV (t)T (t)

(7b)
dI

dt
= βV (t)T (t)− [αd + k

I(t)
I(t) + θ

]I(t)

(7c)
dV

dt
= pI(t)− cV (t)

With initial conditions T (0) = T0, I(0) = I0, V (0) = V0. By employing the extended model, we
reduce the number of parameters that need to be estimated. Note that the infected cell death rate
in the Target-Cell-Limited Model, δ, has been replaced with the function δ(I(t)) = αd + k I(t)

I(t)+θ .
In addition, the Target-Cell-Limited Model appears as the special case where k = 0, θ = 0,and
δ = dα.

The asterisk in Tables 14 and 15 denotes estimations that we carried our for the Target-cell-
limited model using the data from the patients from Section 2.



7 EXTENDED MODEL WITH IMMUNE CONTROL 85

Table 14: Parameters for the Extended Immune Model
Parameter Biological Interpretation Units Known Value

λ Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 (r + d) c
pT0

d Target cell death rate day
−1 Estimated*

α Rate of Viral Decay days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23
k Maximum Value of Activity Potential (mL)Cells−1days−1 Estimated*
θ Half-maximal Simulation Threshold (Cells)mL−1 Estimated*

Table 15: Initial Conditions for the Extended Immune Model
Initial Conditions Value Units

T0 5.9× 105 (Cells)mL−1

I0
c
pV0 (Cells)mL−1

V0 Estimated* (Cells)mL−1

Since we know that solutions to the Extended Immune Model exist, and are positive, unique,
and bounded, we know that the solutions to the simplified model also have these characteristics.
Thus, we do not need to prove existence for this simplified model.

7.4 Parameter Estimates and Numerical Simulations

The final model that we used in order to analyze the data was the simplified extended immune
model as developed in [3] as described in section 7.3. Table 16 highlights the estimates for the pa-
rameter values for the extended immune model. Upon examination of the parameter values, we find
that the estimate for δ, 0.62 days−1, is very close to what we expect as well as extremely consistent
with our results from the simple immune model. Furthermore, our estimates for the initial viral
population has been extremely consistent across all of the models, the extended immune included.

However, there are several of the parameters which are very different from estimates that we
achieved with the simple immune model. For example, the rate of viral production p is nearly twice
as large as the rate of viral production estimated for the simple immune model and four times as
large as that estimated for the standard target-cell-limited model. This again may reflect the notion
that the immune response is much more powerful in the extended immune model and so the rate at
which the virus is produced must be larger in order to have the same amount of viral growth occur
in the presence of a significantly more effective immune response. Additionally, Table 16 illustrates
that the natural death rate for the target cells, d, is several orders of magnitude smaller than we
expect (O(10−3)−O(10−2)) as well as many orders of magnitude smaller than in any of the other
models.

While several of the values for rse for the individual parameters suggests that there is a lot of
individual variability within the data, we can see that the variability is much smaller than that
for the simple immune model. The parameter which has the most variability is the death rate for
the target cells, d, which also happens to be the parameter that is significantly smaller; thus, any
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minute change will greatly effect the value for the residual square error.

Table 16: Parameter Estimates for the Extended Immune Model
Parameter Value s.e.lin r.s.e.lin

ppop 2589.19 937.00 36.19
dpop 0.00002 0.00005 280.91
δpop 0.618 0.0932 15.07
V0pop 3.48 0.338 9.72
θpop 1029.96 534.50 51.9
kpop 0.712 0.0920 12.91

Figure 27 illustrates that the extended immune model appears to effectively capture the dy-
namics of the viral expansion phase, viral decay phase, as well as the steady state. We can clearly
see that compared to the standard target-cell limited model, as well as the constrained Target-
Cell-Limited model, which was the most effective model to this point, the extended immune model
seems to do the best job at capturing the dynamic behavior of the virus. For instance, in the two of
the three patients, the model effectively captures the peak viral load, something that many of the
other models struggled to do. The only exception is Patient 9 where the model underestimated the
expected peak viral load. However, the extended immune model also had the highest estimation of
the peak viral load in Patient 9 for any of the models. Furthermore, the model does a fantastic job
capturing the dynamics of the viral growth and decay phases without any need to constrain the
model to do so. In addition, the estimate for the death rate of infected cells is 0.61 which is similar
to that of the simple immune model and similar to what we expect. Yet, unlike in the simple im-
mune model, the rate of viral decay seems to be accurately estimated as there is no apparent under
or over estimation. This is likely the result of a more effective modeling of the immune dynamics
and their interaction with the natural death of the infected cells.

However, the model is not without a few minor flaws. Figure 27 suggests that the extended
immune model is not very sensitive to the small variations that occur within the data after the virus
achieves the steady state. As illustrated in Patient 9, the viral load may not remain entirely con-
stant after the virus reaches its steady state. Small deviations in an individuals behavior may even
result in changes in the viral load. Furthermore, the immune system is not considered “perfect”
and at times its strength may vary. We see from Figure 27 that the model does not exhibit the same
type of oscillatory behavior that is illustrated by the target-cell-limited and simple immune models
and may struggle to capture any dynamics where the patient’s viral load changes post steady state.
In addition, the model seems to overestimate the initial value of the steady state. This is likely due
to the fact that the model desires to account for the changes in the population after the steady state
and as a result tests to overestimate the value of the viral load during that time period. Yet, even
with these flaws the extended immune model does a wonderful job at capturing and illustrating
the overall dynamics of the system

In addition to the simplified extended immune model, we ran a simulation with the standard
extended immune model to examine the behavior of the immune effector cells, E, during the course
of the infection. This was done in order to determine how realistic our assumption of a quasi-
steady state solution was for the system. By utilizing a stead state approximation, we assumed
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Figure 27: All three Models applied to Patients 7 - 9.

that dE
dt = 0. As we can see in Figure 28, the immune response does change during the course of

the infection. There is the immune response, which begins on approximately day 2 and reaches a
max of 1.8 copies

mL at approximately day 13. The immune response then decays until it ultimately
reaches a steady state of approximately 0.15 copies

mL . However, relative to the other populations that
we have in the system the change in the immune response is minimal during the course of infection.
Furthermore, after approximately day 40, the population remains entirely constant as the virus
reaches the steady state and the viral population is controlled.

Figure 28: The dynamics of the Immune Effector Cell population with dE
dt �= 0.

7.5 Sensitivity Analysis

As with the previous models, we examined how small changes in the parameters impact the dy-
namics of the system in order to determine how sensitive or robust the model is to changes in its
inputs. The corresponding sensitivity systems with respect to β, δ, and p are shown below.
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For β:

(6e) S′
Tβ(t) = −(

V (t)STbeta(t) + SVβ(t)

)− dSTβ(t)

(6f) S′
Iβ(t) =

(
V (t)STβ(t) + SVβ(t)

)− (
(αd + k0E(t)) + I(t)k0SEβ(t)

)

(6g) S′
Vβ(t) = pSIβ(t) − cSVβ(t)

(6h) S′
Eβ(t) =

aE(I(t) + θ)SIβ(t) − I(t)SIβ(t)

(I(t) + θ)2
− dESEβ(t)

For δ:

(6i) S′
Tδ(t) = −β

(
V (t)STδ(t) + SVδ(t)

)− dSTδ(t)

(6j) S′
Iδ(t) = β

(
V (t)STδ(t) + SVδ(t)

)− (
(αd + k0E(t)) + I(t)k0SEδ(t)

)

(6k) S′
Vδ(t) = pSIδ(t) − cSVδ(t)

(6l) S′
Eδ(t) =

aE(I(t) + θ)SIδ(t) − I(t)SIδ(t)

(I(t) + θ)2
− dESEδ(t)

For p:

(6m) S′
Tp(t) = −β

(
V (t)STp(t) + SVp(t)

)− dSTp(t)

(6n) S′
Ip(t) = β

(
V (t)STp(t) + SVp(t)

)− (
(αd + k0E(t)) + I(t)k0SEp(t)

)

(6o) S′
Vp(t) = SIp(t) − cSVp(t)

(6p) S′
Ep(t) =

aE(I(t) + θ)SIp(t) − I(t)SIp(t)

(I(t) + θ)2
− dESEp(t)

From Figure 29 we can see that while the extended immune model is most sensitive to the rate
of infection, β, overall, the model is much less sensitive to changes in the parameters relative to
the other model we have examined up to this point for β, δ, and p. Furthermore, we can see that
the changes in the parameters do not impact the behavior of the virus population after the steady
state, a problem that persisted in all of the other models we examined.
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Figure 29: The effect of varying the parameters β, δ, and p.
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8 Model Comparison and Results

We used three primary methods in order to compare the fits of the three models. We focused
on three metrics commonly used to measure the quality of statistical models for a given set of data.
Each one of these metrics provides a quantitative estimate of the quality of each model in relation
to the others and thus allows s to determine which model is the best fit of the data. In comparing
the models, the model with the lowest value for any of the criteria means that the model is the
best fit of the data. This is because the value is essentially the logarithm of the residual sum of
square errors, thus when both positive and negative the lower value suggests a positive fit. First, we
considered the log-likelihood, Akaike Information Criteria (AIC) and Bayesian Information Criteria
(BIC) derived from Monolix. In addition to the calculations in Monolix, we calculated the residuals
of the various fits using MATLAB in order to compute the sum of squares. We then used the known
formulas for AIC and BIC in order to compare the three model fits.

8.1 Akaike Information Criterion

(8a) AIC = n log
(L

n

)
+ 2k

(8b) AICc = AIC +
2k(k + 1)
n− k − 1

Table 17: Parameters for the Akaike Information Criteria
Parameter Interpretation

k Number of Parameters
L Residual Sum of Squares
n Total number of Observations

In our first model comparison, we used the corrected AIC test, which is an AIC test that
accounts for a finite number of sample sizes, which is the case in our analysis. As a result of
accounting for finite sample sizes, the model tends to account more for changes in the number of
parameters relative to the other models. Thus, in the corrected AIC test, the number of parameters
has a much larger impact on the AIC value (and hence impacts the quantitative quality) of the
fit. For instance, with the standard target-cell-limited model we fit five parameters, whereas with
the extended immune model we fit an extra parameter (totaling 6), and the constrained target-
cell-limited model we fit two extra parameters (totaling 7). These number of parameters have a
large impact of the AIC value and thus in determining which model is the best fit for the data.
Therefore, there may be cases when one model is technically more accurate (has a lower residual
sum of square errors, however, due to the model having additional parameters, may not appear to
be the overall best fit of the data.

The AICC values listed in Table 18 for patients 1 - 14 suggest that the Extended Immune
model is most accurate in describing the dynamics over the first 95 days of infection. Again,
the lowest number suggests the best fit for that specific model. Thus, if we examine Patient
1, the AICC value for the target-cell-limited model was -5.48, for the extended immune it was
-32.322. Thus, the extended immune model was a better fit of the data than the target-cell-
limited model. As we can see in the table, for 13 of the 14 patients, the corrected AIC value for
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Table 18: Akaike Information Criteria Values
Patient AIC(c,TCL) AIC(c,Extended) AIC(c,constTCL) AIC(c,SimpleImmune)

1 -5.4822 -32.331 -11.4176 5.19
2 -5.7999 -22.621 -16.7554 1.3545
3 -18.5493 -18.7395 -17.473 -6.9006
4 -11.8164 -16.1279 -9.0006 -1.7777
5 -8.6837 -33.4409 -12.5796 1.8669
6 9.894 -16.8676 4.7287 20.7795
7 -16.9918 -35.2786 -27.8071 -13.3892
8 -26.9879 -33.5626 -27.1607 -14.4744
9 8.2402 -5.0845 2.1027 15.8091
10 21.6822 -4.3086 20.5935 35.0533
11 -21.0187 -32.0683 -11.4072 -9.06
12 -0.7421 -9.5161 -1.5145 12.3056
13 15.7057 3.5286 1.9273 16.2128
14 6.7216 -7.1624 12.6372 31.5652

the extended model was less than those for the Target-Cell-Limited and constrained Target-Cell-
Limited models. The constrained target-cell-limited model appeared to be the next best fit of the
data, and actually eclipsed the extended immune model in 1 of the 14 patients. However, since the
number of parameters impacts the value of the AIC for a specific model, we expect that part of
the reason that the constrained Target-Cell-Limited model achieves a lower corrected AIC value is
due to the estimation of a smaller number of parameters.

8.2 Bayesian Information Criterion

(9) BIC = n log
(L

n

)
+ k log n

Table 19: Parameters for the Bayesian Information Criteria
Parameter Interpretation

k Number of Parameters
L Residual Sum of Squares
n Total number of Observations

In addition to the AIC criteria, we implemented the Bayesian Information Criterion in order to
help determine which model was the best fit of the data. The BIC, like the AIC, accounts for the
number of estimated parameters. In addition, the BIC values listed in Table 20 support the same
conclusion made from the AIC values in table 18: the extended immune model does the best job
of fitting the data. As we can see from Table 20, again 13 of the 14 patients have the lowest BIC
value given by the extended immune model; the corrected AIC value of patient 13 was lower for
the Constrained Target-Cell-Limited model.

Furthermore, Monolix provides estimates for the Log-likelihood, AIC, and BIC for the indi-
vidual fits. The results from Monolix again suggest that the extended immune model is the most
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Table 20: Bayesian Information Criteria Values
Patient BICTCL BICExtended BICconstTCL BICSimpleImmune

1 49.1288 22.28 43.1934 49.0823
2 58.4022 41.5811 47.4467 53.5357
3 50.3999 50.2097 51.4761 57.6582
4 32.9475 28.636 35.7633 41.4297
5 55.5184 30.7613 51.6225 57.7115
6 64.505 37.7434 59.3396 65.2285
7 42.4357 24.1489 31.6204 37.6119
8 32.4396 25.8649 32.2668 38.2582
9 57.9727 44.6481 51.8352 57.616
10 66.4461 40.4553 65.3574 71.0238
11 33.5922 22.5426 43.2038 49.0927
12 48.9904 40.2165 48.2181 53.9988
13 60.4696 48.2925 46.6912 52.3577
14 29.4556 15.5716 35.3713 40.5012

appropriate for modeling the dynamics of primary infection in these patients: all three of the
measurements were lowest for the extended immune model.

Table 21: Comparison of the Models
Measure TCL Constrained TCL Simple Immune Extended Immune

Log-Likelihood 425.87 397.59 405.05 337.01
AIC 443.87 415.59 431.05 363.01
BIC 449.63 421.34 438.39 371.32
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9 Tumor Dynamics Models

Prior to integrating the dynamics of cancerous tumor development in with our study of HIV,
it is first important to explore the dynamics of tumor growth alone, without immune interaction
or viral interference. The two most commonly used platforms for examining cancerous tumor de-
velopment are the exponential growth and the logistic growth tumor models. In our preliminary
study of tumor dynamics models, we will examine both the exponential power growth tumor model
as well as the logistic growth tumor model. We will then choose a single model to be the basis of
our tumor-immunodeficiency model which will allow us to examine the tumor’s interaction with
an HIV compromised immune system. The decision for which model to use depends on several
factors including the type of tumor, location of the tumor, however the most important character-
istics to consider are the stage of tumor growth as well as the time frame that we will be examining.

There are two primary stages of tumor growth, early and late stage growth. Early stage growth
is highlighted by simple exponential growth where the tumor proliferates uncontrollably as a result
of cellulate mutation as described in section 1.1.3. Therefore, if the tumor is in it’s early stages,
there is not a significant distinction between the power growth and logistic growth models [9]. The
distinction between the two models is amplified in the later stages where the behavior of the tu-
mor is characterized by one of two scenarios: the limiting of growth, either by immune mediated
suppression, achievement of the carrying capacity, or ultimately the termination of the host. As
opposed to power growth, logistic growth during this late stage is self limiting, meaning that the
tumor grows until it reaches the carrying capacity.

Ultimately our decision between the logistic growth and power growth models hinges on whether
or not we are attempting to examine the long term behavior of the tumor. We will explore the
differences between the two models, discuss which model is best for our study, and ultimately use
the model we choose as the basis for our further study with HIV interaction.

9.1 Power Growth Tumor Model

The Power Growth Tumor Model includes the effects of cell growth as a result of genetic
mutations within cells and tumor suppressing genes. The model is the most basic model for
examining tumor growth and is often applied more generally to study population dynamics in
simple systems. It is important to note that the Power Growth Tumor Model does not include the
dynamics of any sort of response, nor does it include any self limited growth. Therefore, we expect
that the population will continue to proliferate indefinitely since there is no mechanism to impede
growth. The Power Growth Tumor Model considers only one population C(t), which denotes the
concentration of cancerous tumor cells at time t and is represented by the following differential
equation:

(10)
dC

dt
= aC(t)b

where a is the tumor cell growth rate, 1
b represents the carrying capacity for the tumor, and

C(0) = C0 is the initial condition for the tumor population. In our case we assume that a mutation
occurs in a single cell, and thus that C(0) = 1. Since the power growth model is relatively simple,
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we are able to explicitly solve the model and derive an expression for the population of tumor cells
for all time. For the Power Growth Tumor Model, we solve equation 10 such that:

C(t) =
(
(1− b)(at +

C1−b
0

1− b
)
) 1

1−b

.

Figure 30: A numerical simulation illustrating the dynamics of
the power growth tumor.

We can clearly from this expres-
sion that the solution is positive,
however that the population of tu-
mor cells is not bounded for all
time. Figure 30 is a numerical sim-
ulation representing the behavior of
the Tumor in the absence of any
sort of response where the parame-
ters were estimated from [9]. As we
can clearly see, the Tumor begins un-
controlled exponential growth that is
never checked at any point, thus con-
firming our theory that the system
was not bounded since the popula-
tion approaches a vertical asymptote.
Furthermore, unchecked growth sug-
gests that the model is not appropri-
ate for all time, since the population
will simply approach infinity as time
increases which is not realistic for our
system. Yet, although we cannot use

the model for all time, the power growth model is extremely effective at representing the initial
dynamics of tumor growth, which has been characterized as exponential in nature [9].

However, in our study of tumor dynamics, we are not only trying to examine the initial growth
phase of the tumor; we are also interested in the long term behavior of the system. Furthermore,
we are interested in more complex system dynamics seen during the introduction of HIV. The
exponential growth phase which will only be good at representing the initial growth and will remain
unaffected by any sort of immune response or viral propagation. Thus, the power growth tumor
model will likely not be the best model for our analysis. However, there are several additional
tumor models which examine the growth and include more complex dynamics which are better for
examining the long term behavior. In the next section we will introduce the Logistic Growth Model
and examine its feasibility as the basis for our tumor-immune model.

9.2 Logistic Growth Tumor Model

The Logistic Growth Tumor Model, like the Power Growth Model, includes the effects of
cancerous tumor development. However, unlike the Power Growth Model, the Logistic Growth
Model includes self containing logistic growth properties that are characteristic for cancer cell
development and the long term behavior of a cancerous tumor. While the model includes self
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limited growth, the Logistic Growth Model does not include any sort of immune mediated response,
and thus, the Logistic Growth Tumor Model, like the Power Growth Model, only considers one
population, C(t) which is the concentration of cancerous tumor cells at time t. The model can be
represented by the single ordinary differential equation:

(11)
dC

dt
= aC(t)(1− bC(t))

where again a is the tumor cell growth rate, 1
b represents the carrying capacity for the tumor,

and C(0) = C0 is the initial condition for the cancerous cell population. As with the Power Growth
Model, we are able to find an explicit solution for the number of tumor cells. In the case of the
logistic growth tumor model, we find that

C(t) =
1

b +
(

1−bC0
C0

)
e−at

Figure 31: A numerical simulation highlighting the dynamics of
a logistic growth tumor model.

By examining this expression, we
can see that C(t) will be both posi-
tive and bounded for all time. This
is incredibly important, because, as
discussed previously, we know that
the cellular population in the body
is finite. In addition, we know that
the long term growth dynamics of
the tumor can be characterized by
exponential growth followed by the
where it will approach a carrying ca-
pacity. This carrying capacity will
either be determined by the loca-
tion and amount of resources that are
available for the tumor’s consump-
tion, which can control the growth,
or by the terminal capacity of the pa-
tient, whereby the patient (and thus
the tumor) will not survive the when
the tumor grows past a specific pop-
ulation. From Figure 31 we can see
a numerical simulation of the logistic growth of a tumor with estimates obtained from [9]. As is
characteristic of cancerous cell development, the tumor assumes an exponential like form during
the initial growth, however, as the tumor cells exhaust the resources promoting their growth, the
tumor’s growth rate begins to subside and the tumor population approaches the carrying capac-
ity, which in this case is approximately 1 × 109 cells

mL . In total, the entire growth process, from
a mutation in a single cell takes approximately 50 days with the most dynamic portion of the
life cycle occurring between days 30 and 50. It is important to note that this life cycle is almost
twice as long as the cycle for HIV and that the dynamic behavior occurs much later. This notion
will become more important when we characterize immune responses to cancerous cell development.
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In Figure 32 we can see the comparison between the Exponential Growth and Logistic Growth
Models. From days 0 to approximately day 38, during what is known as the exponential growth
phase (shown in black on the graph) of the cancer cell development, both the logistic and power
growth models are extremely similar and even overlap. However, at approximately day 38, the two
models begin to diverge as the proliferation rates for the logistic growth begins to slow. This stage
is denoted as the Slowing Growth stage (shown in orange), however, this stage only occurs for the
logistic growth model. Furthermore, by day 50 when the logistic growth has reached its maximum
value (what is known as the carrying capacity), the exponential growth (shown in green) continues,
and the curves have diverged significantly.

Figure 32: A comparison of the Logistic and Power Growth Tumor Models.

9.3 Tumor Immune Model

Since we are going to be examining the long term behavior of the system in an attempt to see
how the tumor will interact with HIV and the immune system, it is much more appropriate to use
the logistic growth tumor model as the basis for developing a tumor-immune model and ultimately
a tumor-immunodeficiency model. As discussed in Section 1.1.3, we know that Cytokines, which are
secreted by Helper-T cells, play an extremely larger role in the development and proliferation of a
immunosuppressive response and ultimately in cancer immunity. Furthermore, they can encourage
innate anti-cancer responses including the proliferation of cytotoxic T-lymphocytes or CD8 T-cells
which are able to attack and kill tumor cells making them a primary component of the immune
response. Thus, when we examine the impact of an immune response and the interaction between
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a developing tumor and the immune system, we will highlight and model the interaction of the
tumor with CD4 T-cells. Thus, the model considers two distinct populations which are denoted:

T (t): concentration of target cells (CD4 T-cells) at time t,
C(t): concentration of cancerous tumor cells at time t.

The model assumes that the CD4 T-cells mature at a constant rate in the thymus and experience
the same death behavior as in the HIV models. Thus, equation 12a of this model is the same
as equation 2a from the standard Target-Cell-Limited model where the viral population is zero.
Furthermore, it supposes that the cancer cells grow logistically and that the interaction between
the cancer and the CD4 T-cells abides by the mass action principle. Given these assumptions, the
model can be defined such that:

(12a)
dT

dt
= σ − dT (t)

(12b)
dC

dt
= aC(t)(1− bC(t))− aCC(t)T (t)

The parameters for which are provided in the table below.

Table 22: Parameters for the Tumor-Immune Model
Parameter Biological Interpretation Units Estimate

a Growth rate (mL)−1days−1 0.514
b 1/Carrying capacity mL(cells)−1 1.02× 10−9

λ Immune production rate (cells)(mL)−1days−1 1.30× 104

ac Immune-tumor interaction rate (cells)(mL)−1days−1 1× 10−6

d Death rate of immune cells days−1 4.12× 10−2

Figure 33: A simulation of the Tumor-Immune Model and Com-
parison to Logistic Growth Tumor Model.

Figure 33 illustrates the dynam-
ics of the tumor-immune model. The
blue line represents the normal tumor
growth without an activated immune
response and the red line represents
the system dynamic with immune ac-
tivation. Clearly, the immune sys-
tem has a major impact on cancerous
cell development, primarily in pace,
however, also in magnitude. We can
see that the immune response clearly
slows cancerous cell growth; whereas
the normal tumor is a carrying ca-
pacity near day 35, the tumor with
immune response does not reach full
strength until ≈ day 145. This de-
lay of tumor cell proliferation is ex-
tremely important as it would allow
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for doctors to more easily and quickly identify tumor development and treat it much more effec-
tively with therapies (whose effects are not included in this model). It has been shown that early
identified cancerous and tumor development is crucial in mounting effective responses [9]. Further-
more, the immune system response results in a lower steady state tumor population; for instance,
the long term steady state for the normal tumor growth model is ≈ 109 whereas, the steady state
for the tumor growth with immune effect is ≈ 5 × 108, or roughly half. Overall, this simulation
suggests that the immune system has a very large impact on the proliferation and progression of
cancerous cell development by highlighting the immune system’s ability to slow cancer cell devel-
opment and even limit its growth.

In addition, we used a sensitivity analysis to analyze the effects of varying the Immune-tumor
interaction parameter, ac.

For ac:

(12c) S′
Tac (t) = −d(STac (t))

(12d) S′
Cac (t) = aC(t)

(− bSCac (t)

)
+

(
1− bC(t)

)
aSCac (t) − ac

(
C(t)STac (t) + SCac (t)

)

Figure 34: The effect of varying the tumor-immune interaction rate, aC .

In Figure 34 we no-
tice that as the interaction
rate between the tumor and
the target cells increases,
the delay of the tumor in-
creases, causing the time
at which the tumor reaches
the carrying capacity to
also increase. This gives the
doctors even more time to
recognize the cancerous tu-
mor development and pre-
scribe therapies to cease
further growth. In addi-
tion, the minimum value of
tumor cells that is achieved
is effected by the interac-
tion rate; as the interac-
tion rate increases, the min-
imum number of cancerous
tumor cells decreases. This is important because treatment implemented at this time would likely
be extremely effective at combating future tumor growth and ultimately leading to the clearance
of the cancer.
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10 Tumor-Immunodeficiency Model

10.1 Model Development

We use the Extended Immune Model as well as the Tumor-Immune Model as the basis for
developing our Tumor-Immunodeficiency Model. However, before we proceed with the model devel-
opment and analysis, it is important for us to note one change between the Tumor-Immunodeficiency
Model and the previous models we base this new model on. One of the original assumptions we
made with regard to the Extended Immune Model was the quasi steady state approximation when
analyzing the dynamics of the immune effector cells. The details of this approximation are provided
in Section 7. We made this assumption due to the short duration of HIV infection prior to the
steady state. As we saw in Section 7, by approximately day 25, the patients had all arrived at
the steady state, and most of the dynamic interaction had already taken place within the system.
Thus, the immune system’s ability to proliferate a vast amount of effector cells is somewhat lim-
ited. However, when we examine the dynamics of the more complex tumor-immune interaction this
assumption will no longer hold. This results from the much longer time frame in which cancerous
cell development occurs. For instance the dynamic portion of the tumor life cycle (until the tumor
population reaches the steady state) is usually between 50 and 150 days [9]. This time period is
significantly longer that the ≈ 25 days in which the viral dynamic occur. Thus, we must remove
the quasi-steady state approximation we utilized earlier in this paper. In developing the model, we
integrate the entire Extended Immune Model from Section 7 with the cancerous tumor cells equa-
tion Tumor-Immune Model from Section 8, where the population of the target cells (CD4 T-cells)
is held consistent across both models. The resulting model is a system of five nonlinear ordinary
differential equations which are detailed in the next section.

10.2 The Model

The Tumor-Immunodeficiency Model examines the interaction between cancer and HIV within the
immune system. As mentioned previously, the model considers five distinct populations:

T (t): concentration of target cells at time t,
I(t): concentration of infected cells at time t,
V (t): concentration of free virus at time t,
E(t): concentration of immune effector cells at time t,
C(t): concentration of cancerous tumor cells at time t.

The resulting model is a system of five nonlinear ordinary differential equations where:

(13a)
dT

dt
= λ− βV (t)T (t)− dT (t)

(13b)
dI

dt
= βV (t)T (t)−

(
αd + k0E(t)

)
I(t)

(13c)
dV

dt
= pI(t)− cV (t)

(13d)
dE

dt
= aE

I(t)
θ + I(t)

− dEE(t)

(13e)
dC

dt
= aC(t)(1− bC(t))− aCC(t)T (t)
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Table 23: Parameters for the Tumor-Immunodeficiency Model
Parameter Biological Interpretation Units Known Value

λ Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 (r + δ) c
pT0

d Target cell death rate days−1 Estimated*
α Rate of viral decay days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23
k0 Maximum value of activity potential (mL)Cells−1days−1 Estimated*
θ Half-maximal simulation threshold (Cells)mL−1 Estimated*
a Growth rate mL−1days−1 0.514
b 1/Carrying capacity mL(cells)−1 1.02× 10−9

ac Immune-tumor interaction rate (cells)(mL)−1days−1 1× 10−6

dE Death rate of immune cells days−1 4.12× 10−2

Table 24: Initial Conditions for the Tumor-Immunodeficiency Model
Initial Conditions Value Units

T0 5.9× 105 (Cells)mL−1

I0
c
pV0 (Cells)mL−1

V0 Estimated* (Cells)mL−1

E0 0 (Cells)mL−1

C0 1 (Cells)mL−1

The asterisk in Tables 21 and 23 denotes estimations that we carried our for the Tumor-
Immunodeficiency model using the data from the patients from Section 2.

10.3 Existence and Uniqueness

10.3.1 Positivity and Boundedness

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0, I(0) > 0,
V (0) > 0, E(0) > 0, C(0) > 0 then for all t ∈ [0, t0], T (t), I(t), V (t), E(t), and C(t) will remain
positive in R

5
+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t), and C(t) will be pos-
itive in R

5
+. We know that all of the parameters used in the system are positive. In section 6.2.1 we

proved the positivity of the Extended Immune Model. For the Tumor-Immunodeficiency Model, the
equations for T (t), I(t), V (t), E(t), remain the same. Thus, we do not need to go through the proofs
for these equations since they are done above. However, we need to show that C(t) remains positive.

We can place lower bounds on the differential equation for C(t) and thus,

dC

dt
= aC(t)(1− bC(t))− aCC(t)T (t) ≥ −aCC(t)T (t)
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Through basic differential equations methods we can resolve the inequalities and produce:

C(t) ≥ e−aC

R
T (t)dt ≥ 0

Thus, for all t ∈ [0, t0], T (t), I(t), V (t), E(t), and C(t) will be positive and remain in R
5
+.

Lemma (Boundedness). There exists an TM , IM , VM , EM , CM > 0 such that for T (t), I(t), I(t),
E(t), C(t) lim supt→∞

(
X(t)

)
≤ TM , lim supt→∞

(
I(t)

)
≤ IM , lim supt→∞

(
V (t)

)
≤ VM , lim supt→∞

(
E(t)

)
≤

EM , lim supt→∞
(
C(t)

)
≤ CM for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], T (t), I(t), V (t), E(t), and C(t) will be
bounded. We know that all of the constants used in the system are positive. In addition, we have
shown that T (t), I(t), V (t), and E(t) are bounded in section 6.2.
As a result, we only need to show that C(t) is bounded.

We can place an upper bound on dC
dt such that

dC

dt
= aC(t)(1− bC(t))− aCC(t)T (t) ≤ aC(t)(1− bC(t))

Furthermore, we know that dC
dt = aC(t)(1 − bC(t)) implies that C(t) = 1

b+

(
1−bC0

C0

)
e−at

. Thus,

we can choose CM = 1
b such that C(t) ≤ CM for all t ∈ [0, t0].

Theorem 11 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0,
I(0) > 0, V (0) > 0, E(0) > 0, C(0) > 0 then ∀t ∈ R T (t), I(t), V (t), E(t), and C(t) will exist in
R

5
+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =

⎡
⎢⎢⎢⎢⎣

T (t)
I(t)
V (t)
E(t)
C(t)

⎤
⎥⎥⎥⎥⎦ and f(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ− dT (t)− βV (t)T (t)
βV (t)T (t)−

(
αd + k0E(t)

)
I(t)

pI(t)− cV (t)
aE

I(t)
θ+I(t) − dEE(t)

aC(t)(1− bC(t))− aCC(t)T (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

Note that f has a continuous derivative on R
5 and thus, f is locally Lipschitz in R

5. Hence, by
the Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas
proved on positivity and boundedness of solutions, we know that there exists a unique, positive,
and bounded solution to the ordinary differential equations given in 13(a)− 13(e).

10.4 Numerical Simulations

We used these parameter estimates to simulate the dynamics of the five populations within the sys-
tem. Furthermore, we examined and analyzed the behavior of the three most critical populations,
the Target Cells (CD4 T-cells), Virus, and Cancerous Tumor cells.
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Figure 35: Simulations of the Tumor-Immunodeficiency Model for Patient
1.

As we can see in Fig-
ure 35, the viral popula-
tion is exactly the same
as when we simulated it
for the extended immune
model and the Tumor-
Immunodeficiency model does
a really nice job at repre-
senting the dynamics of the
system. The projected vi-
ral population is extremely
similar to the data we re-
ceived from our study pa-
tients. Figure 35 also il-
lustrates that the prolifer-
ation of cancer has no im-
pact on the dynamics of the
virus or the target cell pop-
ulations. This is because
the tumor cell’s only inter-
action with the populations
from the Extended Immune
system is with the target cells, and this interaction does not promote production or death within
the target cell population.

Biologically, when target cells interact with the cancerous tumor cells, they are able to recog-
nize the tumor as foreign and release cytokines that ultimately lead to the activation of cytotoxic
T-lymphocytes as stated in section 1.1.3. These cells, once activated, are able to kill the cancerous
tumor cells. Yet, the cancerous cells’ interaction with the target cells does not promote T-cell
growth or death, and thus the viral, Target, and infected cell populations remain unaffected by the
growth of the cancer.

Yet, while it initially appears as though the cancerous tumor population is not affected by the
introduction of the virus and the cancer is simply abiding by the logistic growth, a closer examina-
tion reveals that this is not the case. In fact, the tumor cell population is greatly impacted by the
immune system and subsequent development of an immune response. However the effectiveness of
the immune system is greatly impacted upon the introduction of the virus and viral production,
hence the notion of an immunodeficiency.

Figure 36 reveals a magnified illustration of the dynamics of the system during the first 20 days,
which is the most dynamic portion of the HIV infection cycle. The Figure shows that introduction
of the virus at day zero results in a significant amount of viral growth during the first 8 days of
infection where the viral population grows from approximately 1000virions

mL to 3× 107 virions
mL by day

8. While the population of the target cells remains relatively consistent for the first few days of
infection, over time, the growth of the virus drastically impacts the population of the Target cells.
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Figure 36: A closer look at the Dynamics of the Tumor-Immunodeficiency Model which highlights system
behavior during the most dynamic portion of the viral life cycle.
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For instance, by day 6 the target cell population begins to decrease, until it reaches a steady state
at approximately day 14. What’s more important is that the population of target cells decreases
from 5.9× 105 cells

mL to 1× 104 cells
mL . This decrease has a extremely large impact on the dynamics of

the tumor population. As stated previously, the Target cells serve as a means of recognizing the
existence of cancerous tumor development and are ultimately a crucial component for the initiation
of an immune response. Thus, the death of a significant portion of the population of Target-cells
drastically effects the ability of the tumor to evade, or be unaffected by an immune response. Figure
36 highlights the ability of the tumor to grow during this immunodeficient stage that occurs after
the proliferation of the viral population. In addition, we can see that the target-cell population
begins to decrease at exactly the same time in which the cancerous tumor resurges.

Figure 37: This figure shows the dynamics of the Tumor-Immunodeficiency
Model with no HIV infection.

From Figure 36, we can
see that during the initial
portion of the viral produc-
tion stage the tumor pop-
ulation is decreasing. For
Patient 1, the tumor pop-
ulation decreases from day
0 until approximately day 6
when we see a resurgence of
tumor cell growth and the
tumor begins to grow logis-
tically as though unaffected
by an immune response.
Thus, there seems to be
a relationship between the
population of target cells
and the initiation of can-
cerous cell growth. Fur-
thermore, when the popu-
lation of the target cells re-
mains constant, we see that
the cancerous tumor popu-
lation decreases. This no-

tion is highlighted in Figure 36, where from day 0 to day 6, during which time the Target cell
population remains relatively constant, the population of cancerous tumor cells decreases. Figure
37 is a simulation of the Tumor-Immunodeficiency system where infection is not present (β = 0 and
V0 = 0) and we can see that the cancerous cells ultimately reach levels which are undetectable, and
thus the cancerous tumor growth is stopped and the tumor is effectively eliminated. This suggests
that the immune system plays a crucial role in controlling cancerous cell development. However,
this also suggests that, as soon as the immune system’s ability to detect and destroy the tumor
population as a result of HIV infection occurs, the tumor resurges.

Figure 38 is a system phase portrait which illustrates the dynamics between the cancerous tu-
mor cell and virus populations. We can see that during viral growth phase, prior to the peak viral
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load point, the population of the cancer cells actually decreases. Yet, as soon as the peak viral
load is achieved, the population of tumor cells begins to proliferate significantly, and ultimately
the population approaches the carrying capacity. This again suggests that the tumor population is
being initially controlled during the proliferation of the virus, however, that the tumor population
resurges sometime around the point where the peak viral load occurs.

Figure 38: System Phase Portrait comparing the Tumor and Viral Populations.

Figure 39: System Phase Portrait comparing the Tumor and Target Cell Populations.

Figure 39 highlights the relationship between the Target cells and cancerous tumor cells. We
can see from the Figure that initially the population of cancer cells decreases while the target cell
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population remains relatively constant. This again is reflective of the period of time between days
0 and 6 where the virus and resulting infection has not yet significantly decreased the population of
target-cells. However, after the target cell population begins to decrease as a result of the infection,
the cancerous cell population resurges. This figure is extremely important because it highlights
the central role that the Target cells play in the control of cancer and how their population, when
impacted is very significant with regards to cancerous cell growth. For instance, even small changes
in the target cell population drastically change the dynamics of the tumor.

Figure 40: System Phase Portrait comparing the Target Cell and Viral Populations.

Figure 40 is a system phase portrait which examines the relationship between the target cells and
virus. As we expect, the target cell population remains relatively constant as the viral population
begins to increase, until approximately the peak viral load point, at which time the population
of target cells begins to decrease significantly. This Figure shows how the virus and target cells
interact. We can clearly see that the virus has a very substantial effect on the population of target
cells, however, that a lag exists between the proliferation of the infection and the negative effects
the infection has on the population of target cells.

Figure 41: The effect of varying the tumor-immune interaction rate, aC .

Figure 41 and Fig-
ure 42 illustrate sim-
ulations in which we
vary the rate at which
the cancerous tumor
cells interact with the
target cell populations.
We can see from Fig-
ure 41 that the rate
at which the new cells
interact impacts two
characteristics of the
tumor cells behavior,
namely, the time at
which the cancerous
cell proliferation be-
gins as well as the final
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steady-state population. More specifically, as the rate at which the tumor and immune cells interact
increases, the time at which the tumor begins to experience logistics growth increases. This means
that the immune system maintains the ability to delay the proliferation of cancer. This notion is
extremely important within a treatment context as it can provide doctors addition time to recognize
and ultimately prescribe treatments for effectively controlling the spread and growth of the cancer.
Additionally, we can see that from Figure 41 that as we increase the rate of interaction between the
target and tumor cells, the final steady state population of the tumor decreases. This highlights
that the immune system not only can delay the growth, but can also result in some limited amount
of control. Figure 42 is a magnification of Figure 41 and highlights the delay phase of cancerous
cell development. Figure 42 reveals that not only does the increase in interaction delay the growth
of the tumor, it also results in a lower population during this initial phase making the cancer easier
to treat during this time period.

Figure 42: A magnified visualization of effect of varying the tumor-immune interaction rate, aC .

The following figures are simulations for all 14 of the patients that were infected with HIV.
The figure highlights that the growth of HIV impacts the proliferation of cancer uniquely in each
patient, specifically focusing on the phase of infection from day 0 to approximately day 10 during
which the cancerous tumor population is controlled by the immune system. However, in each case,
after the virus reaches the peak viral load, the cancer beings to grow logistically and approaches
the steady state.
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Figure 43: Simulations of the Tumor-Immunodeficiency Model
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Figure 44: Simulations of the Tumor-Immunodeficiency Model



11 PROPOSED TREATMENT MODEL 110

11 Proposed Treatment Model

In this section we will introduce the background for the treatment model that we will develop during
the project. We will integrate treatments from a mathematical, rather than biological perspective
and our integration will be based on biological assumptions as well as an understanding of how
the treatments impact the viral life cycle. Our analysis will yield insights in optimal treatment
techniques and allow for the precise calculation of individual treatment needs and requirements.

11.1 Biological Background

Essentially the treatment model incorporates drug efficacies and results in a pseudo parameter
modification which changes the behavior of the standard Target-Cell-Limited model to accommo-
date the effects of treatment. Our goal is to see how these changes imparted by the treatment
impact the system and determine what their impact means from a biological perspective.

11.1.1 Highly Active Antiretroviral Therapy

The management and treatment of HIV normally includes the use of multiple types of medica-
tion to attempt to control HIV from growing and multiplying. There are several different types of
therapies which target different stages of the viral life cycle. These include Reverse Transcriptase
Inhibitors as well as Protease Inhibitors. This usage of multiple forms of antiretroviral agents is
often known as Highly Active Antiretroviral Therapy (HAART) and is a common type of therapy
used to address patient’s suffering from HIV. HAART decreases a patients total burden of HIV,
maintains the functionality of the immune system to a much greater extent, and prevents many
opportunistic infections which can often lead to death in non-treated patients.

11.1.2 Reverse Transcriptase Inhibitors

As developed previously, HIV is a RNA virus. This means that when it infects a cell, the enzyme
reverse transcriptase (RT) allows for the creation of a DNA copy of the virus RNA genome, which
is essential for virus replication. Current drug therapies incorporate RT inhibitors. By inhibiting
the reverse transcription process, HIV can enter a cell but will not successfully infect it; a DNA
copy of the viral genome will not be made and the cell will not make viral proteins or new virus
particles. Thus, the viral RNA that enters the cell will not be stable and will degrade, leaving the
cell uninfected.

In terms of the model, a reverse transcriptase inhibitor blocks infections and hence the infectivity
of the virus. We use εRT to denote the efficacy, or effectiveness, of reverse transcriptase inhibitors. A
perfect reverse transcriptase inhibitor is defined such that (εRT = 1). However, reverse transcriptase
inhibitors, like other drugs, are not perfect, yet their overall effect on the dynamics of the model is
significant enough to include in our analysis [26].
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11.1.3 Protease Inhibitors

The viral enzyme protease cleaves the viral protein chains, called polyproteins, into indi-
vidual proteins. This ultimately allows for the production of virus particles [25]. However, protease
inhibitors cause infected cells to produce non-infectious virus particles. Therefore, when consider-
ing the implementation of protease inhibitors it is essential to consider two separate populations of
virus particles, those infected, VI , and those non-infected, VNI [26]. More specifically, VI denotes
the population of virus particles that have not been influenced by a protease inhibitor and thus their
polyproteins have been cleaved. In contrast, VNI represents the population of virus particles with
uncleaved polyproteins. Therefore, we will let V = VI + VNI where V is the total virus population
[26].

11.2 Model

A model for treatment of HIV infection was developed based on the Target-Cell-Limited Model
and describe the viral dynamics of primary infection. The model considers four distinct populations
which are denoted:

T (t): concentration of target cells at time t,
I(t): concentration of infected cells at time t,
VI(t): concentration of free virus at time t,
VNI(t): concentration of free virus at time t.

Figure 45: A visual representation of the dynam-
ics that govern the interactions as mathematically de-
scribed in the Treatment Model.

Thus, we consider the mathematical
model of HIV-1 infection given by the nonlinear
system of ordinary differential equations:

(14a)
dT

dt
= s− (1− εRT )βVI(t)T (t)− dT (t)

(14b)
dI

dt
= (1− εRT )βVI(t)T (t)− δI(t)

(14c)
dVI

dt
= (1− εPI)pI(t)− cVI(t)

(14d)
dVNI

dt
= εPIpI(t)− cVNI(t)

With initial conditions T (0) = T0, I(0) = I0,
VI(0) = V0, and VNI = 0.

11.3 Model Development

Equation 14a models the dynamics of the tar-
get cell population. The equation can be rep-
resented by production rate, infection rate, and
death rate. The equation is determined to be:

Rate of change of target cell population =
(Production rate) - (Infection rate) - (Death rate)
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Production rate: Just as in the standard Target-Cell-Limited model, we assume that target cells
are produced at a constant rate, the target cell production rate, s [11, 14, 25].

Infection rate: As stated previously, Reverse Transciptase Inhibitors block infection reducing
the parameter β. We use the expression (1 − εRT ) to account for the effect of the Reverse Tran-
sciptase Inhibitors since the infection will result from the proportion of time where the Reverse
Transcriptase inhibitor is ineffective. As previously denoted, εRT is the efficacy of the inhibitor.

Death rate: The target cell death rate term is the same as for the Target-Cell-Limited model.

Equation 14b represents the dynamics of infected cells. The equation for the rate of change of
the infected cell population is dictated by both the rate of infection and death rate. The equation
can be represented as:

Rate of change of infected cell population = (Infection rate) - (Death rate)

Infection rate: This term is the same as the infection rate term in the target cell differential
equation with a reversal in sign.

Death rate: Similar to target cell death, infected cells are cleared by the immune system at a
rate, δ, proportional to the infected cell population [14].

Equation 14c mathematically describes the dynamics of the infectious virus cell population. This
equation consists of the virus production rate and viral clearance rate and is:

Rate of change of virus population = (Growth rate) - (Clearance rate)

Production rate: While the infectious virus production rate varies from cell to cell and indi-
vidual to individual, when considering the aggregate population this model assumes the rate of
proliferation is constant and that new infectious viruses are produced at a rate, p, proportional
to the infected cell population [14]. Additionally, only the virions that are not impacted by the
protease inhibitors will become infectious. Thus, we multiply the growth rate by the expression
(1− εPI) to adjust for the impact of the treatment since infectious virus will be produced at a rate
proportional to the ineffectiveness of the inhibitor.

Clearance rate: The clearance rate remains the same as for the Target-Cell-Limited model.

Equation 14d mathematically describes the dynamics of the non-infectious virus cell population.
This equation consists of the non-infectious virus production rate and non-infectious viral clearance
rate and is:

Rate of change of virus population = (Growth rate) - (Clearance rate)

Production rate: This expression is the same as the infectious virus with the exception that the
non-infectious virus is produced by interacting with the protease inhibitors. However, unlike the
infectious virus production rate the growth of the non-infectious virus is multiplied by (εPI) which
corresponds to the proportion of time where the inhibitor is effective.

Clearance rate: The non-infectious virus clearance rate is the same as the infectious virus with
the exception that the clearance rate is proportional to the population of the non-infectious virus.

It is important to note that all of the model parameters are presumed to be positive. In ad-
dition, there are two biologically reasonable assumptions we are able to make with regard to the
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Table 25: Parameters for the Treatment Model.
Parameter Biological Interpretation Units Known Value

s Target cell production rate (Cells)mL−1days−1 dT0

β Rate of infection (mL)Cells−1days−1 Estimated*
d Target cell death rate days−1 Estimated*
δ Infected cell death rate days−1 Estimated*
p Viral production rate days−1 Estimated*
c Viral clearance rate days−1 23

εRT Reverse Transciptase Inhibitor Efficacy N/A N/A
εPI Protease Inhibitor Efficacy N/A N/A

Table 26: Initial Conditions for the Treatment Model
Initial Conditions Value Units

T0 5.9× 105 (Cells)mL−1

I0
c
pV0 (Cells)mL−1

V0 Estimated* (Cells)mL−1

values of parameters in relation to one another. Notably, it is biologically reasonable to assume that
infected cells have a higher death rate than target cells, namely δ ≥ d. Furthermore, in early HIV
infection, before the peak in viral load, we assume that the total number of target cells remains ap-
proximately constant (i.e. at equilibrium). Thus, the equilibrium number of target cells is given by:

dT
dt = 0 =⇒ 0 = s− βTV − dT, where V=0, =⇒ s = dT0. Thus, s = dT0.

Furthermore, as with the Target-Cell-Limited model, estimates of c made during HIV chronic
infection indicate that c ≈ 23day−1 [27]. While this value is estimated from chronic infection,
clinical studies have determined that viral clearance may have the same magnitude during early
infection. Additionally, we know that T0, the initial number of target cells is fixed. Additionally,
perfect drugs are the special case where εRT or εPI are equal to one. The asterisk in Tables 23
and 24 denotes estimations that we carried our for the Treatment model using the data from the
patients from Section 2.

11.4 Positivity and Boundedness

In order to retain the biological validity of the model, we must prove that solutions to the
system of differential equations are positive and bounded for all values of time. For example,
concluding that a population is negative is not biologically feasible. Furthermore, the populations
must remain finite since the human body can only be composed of a finite number of cells. In
addition, boundedness and positivity illustrate that once infected, it is possible that the population
of the virus will continue to exist beneath the detectable threshold without doing significant damage
[25]. The next step in analyzing our model will be to prove positivity and boundedness for the
system of differential equations. We will do so by proving the following theorems.

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0, I(0) > 0,
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VI(0) > 0, VNI(0) > 0 then for all t ∈ [0, t0], T (t), I(t), VI(t), VNI(t) will remain positive in R
4
+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], T (t), I(t), VI(t), VNI(t) will be positive in
R

4
+. We know that all of the parameters used in the system are positive. Thus, we can place lower

bounds on each of the equations given in the model. Thus,

dT

dt
= s− dT (t)− (1− εRT )βVI(t)T (t) ≥ −dT (t)− (1− εRT )βVI(t)T (t)

dI

dt
= (1− εRT )βVI(t)T (t)− δI(t) ≥ −δI(t)

dVI

dt
= (1− εPI)pT (t)− cVI(t) ≥ −cVI(t)

dVNI

dt
= εPIpT (t)− cVNI(t) ≥ −cVNI(t)

Through basic differential equations methods we can resolve the inequalities and produce:

T (t) ≥ e−μt−(1−εRT )β
R

VI(t)dt > 0

I(t) ≥ e−δt > 0

VI(t) ≥ e−ct > 0

VNI(t) ≥ e−ct > 0

Thus, for all t ∈ [0, t0], T (t), I(t), VI(t), VNI(t) will be positive and remain in R
4
+.

Lemma (Boundedness). There exists an TM , IM , VI,M , VNI,M > 0 such that for T (t), I(t), VI(t),

VNI(t) lim supt→∞
(
T (t)

)
≤ TM , lim supt→∞

(
I(t)

)
≤ IM , lim supt→∞

(
VI(t)

)
≤ VI,M , lim supt→∞

(
VNI(t)

)
≤

VNI,M for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], T (t), I(t), VI(t), VNI will be bounded.
We know that all of the constants used in the system are positive.

dT

dt
+

dI

dt
= s− dT (t)− δI(t)

Since all of the constants are positive,
d(T + I)

dt
≤ s−min{d, δ}(T + I)(t)

which implies,
(T + I)(t) ≤ s

min{d, δ} + c0e
−min{d,δ}t

taking the limsup of both sides,

lim sup
t→∞

(T + I)(t) ≤ lim sup
t→∞

( s

min{d, δ} + c0e
−min{d,δ}t

)
=

s

min{d, δ}
So, choose TM = IM =

s

min{d, δ}
Thus, (T + I)(t) is bounded, so T (t) and I(t) are all bounded since

T (t), I(t) ≤ (T + I)(t).
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So,
T (t) ≤ TM , and I(t) ≤ IM for all t ∈ [0, t0]

In addition, since all of the constants are positive, we can place an upper bound on
dVI

dt
so,

dVI

dt
= (1− εPI)pI(t)− cVI(t) ≤ (1− εPI)pI(t)

Therefore, we can choose
VI,M = (1− εPI)pIM

Thus,
VI(t) ≤ pIM = VI,M .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that VI(t) is bounded for all t ∈ [0, t0].

Additionally, we can place an upper bound on
dVNI

dt
so,

dVNI

dt
= (εPI)pI(t)− cVNI(t) ≤ (εPI)pI(t)

Therefore, we can choose
VNI,M = (εPI)pIM

Thus,
VNI(t) ≤ pIM = VNI,M .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that VNI(t) is bounded for all t ∈ [0, t0].

Theorem 12 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy T (0) > 0,
I(0) > 0, V (0) > 0 then ∀t ∈ R T (t), I(t), VI(t), VNI will exist in R

4
+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =

⎡
⎢⎢⎣

T (t)
I(t)
VI(t)

VNI(t)

⎤
⎥⎥⎦ and f(x) =

⎡
⎢⎢⎣

s− dT (t)− (1− εRT )βVI(t)T (t)
(1− εRT )βVI(t)T (t)− δI(t)

(1− εPI)pI(t)− cVI(t)
(εPI)pI(t)− cVNI(t)

⎤
⎥⎥⎦

Note that f has a continuous derivative on R
4 and thus, f is locally Lipschitz in R

4. Hence, by
the Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas
proved on positivity and boundedness of solutions, we know that there exists a unique, positive,
and bounded solution to the ordinary differential equations given in 1(a)− 1(d).

11.5 Optimal Control

11.5.1 Objective Function

In this model, the single-objective cost function to be minimized is given by

J(εPI , εRT ) =
∫ tf

0
[mI(t) + nε2

RT + qε2
PI ]dt

where m, n, q > 0 are positive weights to balance the factors and tf is the final time. The term
mI(t) represents the cost of the infection. In the case of vaccinations, it is commonly assumed that
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the cost of control is usually nonlinear with the quadratic form, nε2
RT and qε2

PI [1]. Our goal is to
minimize the infected cell population, thus the cost of the infection, while also keeping the cost of
treatment small. This is because high doses of treatment can often have harmful effects. We can
achieve this goal by finding an optimal control for ε∗RT and ε∗PI such that

J(ε∗PI , ε
∗
RT ) = min{J(εPI , εRT )|εPI , εRT ∈ U}

with the control set

U = {(εPI , εRT )|εi : [0, tf ] → [0, 1], lebesgue measurable i = PI, RT}

The necessary conditions that an optimal control satisfy result from Pontryagin’s Maximum Prin-
ciple.

11.5.2 Pontryagin’s Maximum Principle

Assume we have an objective function that has a control u(t) and an associated state x(t), we want
to optimize the cost functional, J [x(t), u(t)].

If u∗(t) and x∗(t) are optimal for the problem

max{J [x(t), u(t)]}, where J [x(t), u(t)] = max{
∫ tf

t0

f(t, x(t), u(t))dt}

subject to dx
dt = g(t, x(t), u(t)) and x(t0) = x0 then there exists a piecewise differential adjoint

variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian, H, is given by

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and
λ(t)
dt

= −∂H(t, x∗(t), u∗(t), λ(t)
∂x

where λ(tf ) = 0

Thus, Pontryagin’s Maximum Principle gives the necessary conditions for the existence of an
optimal solution. However, in order to determine the sufficient conditions we must reference the
following theorem [15].

Theorem. For the optimal control problem, the conditions of the maximum principle are sufficient
for the global minimization of J [x(t), u(t)], if the minimized Hamiltonian function H, defined above
is convex in the variable x for all t in the time interval [t0, tf ] for a given λ [1].
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11.5.3 Analysis

Pontrayagin’s Maximum Principle applied to our objective function J(εPI , εRT ) =
∫ tf
0 [mI(t) + nε2

RT + qε2
PI ]dt

results in minimizing a Hamiltonian H where

H = mI(t) + nε2
RT + qε2

PI + λT {s− (1− εRT )βVI(t)T (t)− dT (t)}+ λI{(1− εRT )βVI(t)T (t)−
δI(t)}+ λVI

{(1− εPI)pI(t)− cVI(t)}+ λVNI
{εPIpI(t)− cVNI(t)}

where λT , λI , λVI
, λVNI

are the adjoint variables (also sometimes referred to as co-state vari-
ables).

Applying Pontryagin’s Maximum Principle results in the following theorem.

Theorem 13 (Optimal Control for the Treatment Model). There exists an optimal control ε∗PI

and ε∗RT and the corresponding solutions (T ∗, I∗, V ∗
I , V ∗

NI) that minimizes J(εPI , εRT ) over U . Fur-
thermore, there exists adjoint variables λT , λI , λVI

, λVNI
which satisfy

(15a) −dλT

dt
= λT [−(1− εRT )βVI(t)− d] + λI [(1− εRT )βVI ]

(15b) −dλI

dt
= m− λId + λVI

[(1− εPI)p] + λVNI
[εPIp]

(15c) −dλVI

dt
= λT [−(1− εRT )βT (t)] + λI [(1− εRT )βT (t)]− λVI

c

(15d) −dλVNI

dt
= −λVNI

c

with transversality conditions λT (tf ), λI(tf ), λVI
(tf ), λVNI

(tf ) = 0

and the controls ε∗RT and ε∗PI which satisfy the optimality conditions,

ε∗RT =
βV ∗

I T ∗(λT + λI)
2n

and ε∗PI =
pI∗(λVI

− λVNI
)

2q

Proof. The differential equations governing the adjoint variables are obtained by differentiation of
the Hamiltonian function, evaluated at the optimal control [1]. Thus, the adjoint system can be
written as

(15a) −dλT

dt
=

∂H

∂T
= λT [−(1− εRT )βVI(t)− d] + λI [(1− εRT )βVI ]

(15b) −dλI

dt
=

∂H

∂I
= m− λId + λVI

[(1− εPI)p] + λVNI
[εPIp]

(15c) −dλVI

dt
=

∂H

∂VI
= λT [−(1− εRT )βT (t)] + λI [(1− εRT )βT (t)]− λVI

c

(15d) −dλVNI

dt
=

∂H

∂VNI
= −λVNI

c

with transversality conditions λT (tf ), λI(tf ), λVI
(tf ), λVNI

(tf ) = 0.

On the interior to the control set, where 0 < εRT , εPI < 1, we have
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0 =
∂H

∂εRT
= 2nε∗RT − βV ∗

I T ∗λT − λIβV ∗
I T ∗

0 =
∂H

∂εPI
= 2qε∗PI − λVI

pI∗ + λVNI
pI∗

which can be simplified such that

2nε∗RT = βV ∗
I T ∗(λT + λI) and 2qε∗PI = (λVI

+ λVNI
)pI∗

and hence we obtain

ε∗RT =
βV ∗

I T ∗(λT + λI)
2n

and ε∗PI =
(λVI

+ λVNI
)pI∗

2q

and thus,

ε∗RT = max{0, min
(
1,

βV ∗
I T ∗(λT + λI)

2n

)
} and ε∗PI = max{0, min

(
1,

(λVI
+ λVNI

)pI∗

2q

)
}

11.6 Numerical Simulations

Table 27: Parameter estimates of the Treatment Model
Parameter Value s.e.lin r.s.e.lin

ppop 374.756 121.466 32.41
dpop 0.00728 0.00098 13.39
δpop 0.24168 0.033 13.66
V0pop 3.844 0.295 7.68

Figure 46: A numerical simulation of Protease Inhibitors and
Reverse Transciptase Inhibitors at εPI = εRT = 0.3.

In this section, we utilize the data
as discussed in section 2 to simulate the
impact of treatment on the dynamics of
HIV primary infection. We explore the
Treatment Model as derived in section
4 to study the effects of both reverse
transciptase inhibitors and protease in-
hibitors on the proliferation of the viral
and infected cell populations within the
host. Using various combinations of the
two treatment, one at a time and com-
bined, we investigate and compare the
numerical results from simulations. In
doing so, we are able to numerically il-
lustrate how the efficacy of each one of
the treatments effects the level of infec-
tion, as well as consider the application
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of HAART therapy in order to ultimately achieve viral clearance.

Our analysis yielded parameter estimates for both the population fit as well as individual fit
parameters; Table 25 illustrates the estimates obtained for the population parameters. In addition,
Table 25 provides the standard errors (se) and residual standard errors (rse) for both the popula-
tion fixed and random parameters. The standard error measure indicates the extent to which an
estimate deviates from the true population. The rse is the standard error expressed as a percentage
of the estimate. In general, rse of 25% or higher should be used with caution. As we can see, the
rse values for the population parameters are less than 25 with the exception of ppop which is 32.41;
however, we will proceed with the estimates we obtained.

Figure 47: The increased impact of combination therapy with both
inhibitors at 0.3.

Furthermore, we can use
these estimates to run simula-
tions of the model at various lev-
els of treatment, in order to visu-
alize how treatment impacts the
dynamics of the system. As we
can see in Figure 46, both the re-
verse transcriptase and protease
inhibitors impact the behavior of
the virus as well as the charac-
teristics of viral infection. For
instance, the rate of viral pro-
duction appears to decrease, as
visualized by the decrease in the
slope from the initiation of in-
fection to the peak viral load
under treatment. Additionally,
the virus achieves a peak viral
load that is approximately 20%
smaller for the reverse transcrip-
tase inhibitor and 40% lower for
the protease inhibitor. In addi-
tion to a smaller peak viral load, the time at which the peak viral load is achieved is also delayed
by several days with both treatments. This decrease in peak viral load can be explained due to
the decrease in the rate of viral production which is likely giving the immune system more time to
respond to the infection. As a result of this increased horizon, we are seeing a smaller peak viral
load as a result.

Figure 47 illustrates the impact of combination HAART treatment protocol. As we can see,
combining both the reverse transcriptase inhibitor and protease inhibitor therapies, at the same
levels as previously determined simulated in Figure 47 results in the decrease in the rate of viral
production, a peak viral load that is approximately 80% smaller than the non-treated patient, as
well as a delay in the time at which the peak is achieved. However, even at this level of combination
treatment, the virus persists and we do not see viral decrease or the elimination of infection.
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Figure 48: An illustration of the sensitivity of the combination
therapy in the Treatment Model.

In Figure 48, we simulate the ef-
fect of a combination therapy at var-
ious levels. In this figure, we in-
crease the treatment effectiveness of
the combination therapy by 10% each
new simulation from 0 until 0.7, or
70% effective combination therapy.
The figure suggests that changes in
the treatment effectiveness at lower
levels (i.e. the change from 10% ef-
fective to 20% effective) do not dras-
tically change the behavior of the
model, however, as the treatment be-
comes more effective the subsequent
change on the behavior of the virus
becomes more pronounced. In addi-
tion, this figure highlights the impact
that changes in treatment effective-
ness have on the behavior of the virus.
For instance, we can clearly see that
more effective treatment results in a

smaller rater of viral production, lower peak viral load, as well as a continued delay of the peak viral
load point which is consistent with the behavior that was exhibited with the individual protease
and reverse transcriptase treatments.

11.7 Discussion

As completed in section 4, we can derive the viral reproduction number for our system of
equations. The notion of a viral reproduction number was initially developed for the field of epi-
demiology in order to mathematically characterize the volatility of an infectious disease. In an
epidemiological setting, R0 represents the number of people that an infected individual will infect
during their lifetime. However, this notion can be applied to the study of viral dynamics in vivo. In
fact, the viral reproduction number is an extremely important quantity in our analysis of our mod-
els. Biologically, in an in vivo model, R0 represents the average number of infected cells produced
by an initially infected cell over its lifetime [24]. As stated previously, the value of R0 is a well
established norm when discussing viral infections and is commonly discussed when approaching
modeling problems [24].

The literature which focuses on HIV typically characterizes the R0 value for HIV to be between
3 and 6. This means that for every cell that is infected with HIV, three to six more cells will be
infected. This suggests that the infection will tend to persist within the immune system. However,
from section 4, we can determine that treatment impacts the value of the viral reproduction number
and thus, R0,T reated = (1−εRT )(1−εPI)βpλ

δdc = R0(1− εRT )(1− εPI) where R0 is the non-treated viral
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reproduction number. In order to eliminate infection, the viral reproduction number must be less
than one. Thus, we need R0,T reated < 1. This is because, when the viral reproduction number is
less than one, the viral clearance equilibrium will always be stable as seen in section 4. Therefore
in order to achieve viral clearance, R0(1 − εRT )(1 − εPI) < 1, and thus, (1 − εRT )(1 − εPI) < 1

R0
.

We can interpret this as the following theorem.

Theorem 14. In order to achieve viral clearance, for each individual patient (1− εRT )(1− εPI) <
1

R0
.

Essentially, this means that for each patient the combined effectiveness of the combination ther-
apy must be greater than or equal to 1− 1

R0
. Thus, on average, in order to completely eliminate the

virus, we need a combined therapy treatment which is approximately 80.12% effective as illustrated
in Table 5.

Table 28: Individual Treatment Efficacies Required for Viral Clearance
Patient R0 Efficacy of Treatment to Eliminate Infection

1 5.326 0.8122 or 81.22%
2 5.872 0.8297 or 82.97%
3 5.914 0.8309 or 83.09%
4 5.310 0.8117 or 81.17%
5 6.043 0.8345 or 83.45%
6 3.574 0.7202 or 72.02%
7 4.532 0.7793 or 77.93%
8 6.213 0.8390 or 83.90%
9 4.994 0.7998 or 79.98%
10 3.965 0.7478 or 74.78%
11 5.766 0.8266 or 82.66%
12 6.442 0.8448 or 84.48%
13 3.940 0.7462 or 74.62%
14 2.559 0.6092 or 60.92%

Mean 5.032 0.8013 or 80.13%
Median 5.318 0.8120 or 81.20%

Standard Deviation 1.157 0.0646 or 6.46%

Figure 49 illustrates the notion of the required level of treatment in order to achieve viral
clearance, and thus eliminate the infection. The graph on the left shows treatment which is 80%
effective. Even with a treatment at is 80% effective, we do not see an elimination of the virus in
Patient 11. However, while viral clearance does not occur, there is a very notable change in the
behavior of the virus. The peak viral load for the reverse transcriptase treatment is just 3% of the
non-treated patient, and less than 0.5% of the non treated for the protease inhibitor treatment.
Furthermore, the peak viral load occurs at approximately day 143, which is significantly later than
in the non-treated patient. Yet, while the treatment clearly has drastic effects on the behavior of
the infection, it fails to eliminate the infection entirely. According to our table above, Patient 11
is required to have at least an 82.66% effective treatment in order to achieve viral clearance.

Figure 49 illustrates the effects of both protease inhibitor treatment as well as reverse transcrip-
tase treatment when they are both individually 83% effective, holding the other to be 0% effective
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Figure 49: Simulation of the Treatment model at varying efficacies for the therapies for Patient 11. We can
see that our estimation of efficacy of treatment to eliminate infection results in viral clearance.

(or not in use). We can see that the more effective treatment drastically changes the behavior of
the virus. From the initiation of infection, the virus population decays until it reaches levels low
enough to be considered undetectable; there is never an increase in the viral population. Thus, the
figure illustrates that our estimate provided in Table 26 was correct.

Figure 50: The impact of treatment that causes viral clearance
versus combination therapy.

Figure 50 highlights the effective-
ness of the HAART combination ther-
apy treatment. In Figure 50, both
the reverse transcriptase and protease
inhibitor treatments are individually
conducted at an effectiveness level of
90% and, as predicted, the virus is
cleared from the system. By day 100,
the population of the virus was ap-
proximately 100, which would be un-
detectable, however, the virus may re-
main latent. Yet, we can see that the
viral population continues to decay
over time, eventually approaching the
0 limit. The solid blue line represents
the combination therapy where both
the reverse transcriptase and protease
inhibitors are held at 67.5% effective
treatment. Clearly, the combination
therapy follows a similar functional
form to the 90% effective individual

therapies as the virus population continues to decay over time. Thus, despite the fact that each
individual treatment is less effective (and hence less potent) 67.5% compared to 90%, the same
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results hold. This is because a 67.5% combination therapy treatment results in the same effect as
an 89.43% effective non-combination therapy treatment. Thus, this figure illustrates how a less
potent dose of both treatments, when combined, can produce the same effect as higher doses of the
individual therapies.
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12 Conclusions

In this paper, we sought to learn more about the relationship between cancer and HIV within
the immune system by introducing and analyzing mathematical models of immune system dynam-
ics in the presence of cancer and immunodeficiency. We began by developing and analyzing several
models for HIV infection and, using data from HIV infected individuals, compared the models to
determine which best fit the data. We proved existence, uniqueness, positivity, and boundedness
for the models and derived the conditions that guarantee the asymptotic stability of the equilib-
ria. Next, we explained some basic tumor growth models as well as a tumor-immune model which
integrated an immune response to cancerous tumor cell development. Then using insights from
our analysis of both the HIV and tumor models, as well as our determination of best fit from the
patient data, we developed a novel model which integrated the effects of HIV and cancer within the
immune system. Through our analysis of the models, we gained valuable insights into the behavior
of the immune system as well as the dynamics of infection and cancerous cell growth.

During primary infection, the mechanism which causes the virus to reach a peak value prior to
decaying to the lower steady state population is still unknown. One hypothesis is that the peak
is Target-Cell-Limited, meaning that the virus runs out of possible hosts to infect, while another
suggests that the immune system plays a key role in controlling the infection. We sought to explore
these two schools of thought by examining four models to represent the dynamics of the infection,
two that were Target-Cell-Limited and two that included an immune response.

Using both qualitative and quantitative techniques, we determined that the immune system
plays a key role in characterizing HIV infection. The Extended Immune model, which included a
complex immune response mechanism, maintained the lowest corrected Akaike Information Crite-
rion, Bayesian Information Criterion, and Log-likelihood values which suggests that the Extended
model was the best at capturing the overall dynamic and behavior of the infection. This suggests
that the immune system plays an important role in defining the dynamics of the infection. However,
additional study could be conducted to better investigate this hypothesis. For instance, we assumed
a quasi-steady state approximation for the immune effector cells, which simplified the model. This
simplification could be removed, and the more complex model can be compared to the simplified
model to determine which was more accurate. In addition, we could advance the model to break
down individual populations of immune cells which we did not explore in our study. For instance,
one could distinguish between CD8 T-cells, Cytotoxic T-lymphocytes, and Natural Killer Cells, all
which likely play a significant role, but would exhibit different dynamics and interactions with the
infected cells. Yet, by making the models more complex to account for the additional populations,
the ability to conduct more advanced analysis will be limited.

Since the Extended Immune model was the best for characterizing the infection, we utilized it
as the basis of our Tumor-Immunodeficincy model. In addition, during our study we investigated
several tumor growth models. Through simulations studying long-term dynamics of cancerous cell
growth and examining the positivity and boundedness of the populations within these models, we
determined that it is much better to utilize a logistic or other form of self-limiting growth to model
the dynamics of cancerous tumor cell growth. In addition to uncontrolled tumor growth, we in-
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cluded the interaction of T-cells and tumor within the immune system based on the CD4 T-cell
(Target) cells present in the HIV models. We then combined the Extended Immune and Tumor-
Immune models and developed a novel Tumor-Immunodeficiency model which included populations
for characterizing both the infection of HIV as well as cancerous tumor cell development.

Through our analysis of this new model we gleaned several results. First, we were able to see
that CD4 T-cells play a role in the immune system’s interaction with cancer, and ultimately have
the ability to control cancerous cell development. Additionally, we noted that the immune system
loses this ability to control cancer upon infection by HIV, thus validating, from a mathematical
perspective, the notion that HIV greatly impacts the proliferation of cancer.

By examining the dynamics of the model, we were able to determine that our immune system
is constantly eliminating early cancerous cell development through normal immune function, and
that our models suggest that the CD4 T-cells play a crucial role in doing so. Through simulation of
the mathematical models, we determined that each patient in our study would be able to stop the
cancerous cell development through normal function. In each case, we saw an immediate decrease
in the population of tumor cells and either control or elimination of the cancerous cell population.
This likely involves CD4 T-cells recognizing the beginning stages of development and proliferating a
robust immune response. Furthermore, when we removed HIV from our Tumor-Immunodeficiency
Model, by setting the population of the virus equal to zero, we saw that the tumor was eliminated.
While there are instances in which a more prolific tumor will trump any normal immune response,
our analysis of the immune system’s ability to ward off tumor development under normal conditions
suggests that CD4 T-cells play a crucial role in that ability. Yet, our analysis also highlights that
the CD4 T-cells are very vulnerable upon initiation of HIV infection.

In our analysis, we showed that while the immune system has the ability to control cancerous
cell development through normal function of the CD4 T-cells, HIV infection greatly impacts the
systems capabilities and has a huge impact on the dynamics of the tumor. Upon the initiation
of infection, there is a massive proliferation of the virus. However, immediately following the vi-
ral production, the population of target cells remains steady. There is an apparent “lag” before
the target cell population decreases as a result of infection. During this time period, which typ-
ically lasts seven days, the cancer is controlled by the immune system via the same mechanism
as discussed in the previous paragraph. This is illustrated by the fact that the cancerous tumor
population is decreasing despite the proliferation of the virus. However, after approximately seven
days, the target cell population begins to be affected by the proliferation of the virus and the
concentration of CD4 T-cells decreases rapidly. During this time, the cancer population begins to
proliferate uncontrollably and assumes uncontrolled growth once again. Thus, while the immune
system previously maintained the ability to control the cancer, shortly after the proliferation of
HIV, the immune system loses this functionality. During our study, we primarily considered that
the proliferation of cancer and initiation of infection occurred at day zero. Additional exploration
should be conducted to see if a simulated delay might be possible to examine the behavior of HIV
and cancer initiation at different points at time and the impact that delay has on the dynamics of
the system.

In addition to examining untreated systems, we also examined how treatment impacts the pro-
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liferation of HIV. In doing so, we used asymptotic stability analyses to define treatment thresholds
in order to eliminate the virus and clear the infection. Additionally, we were able to estimate
necessary efficacies of treatment for individual patients and apply optimal control theory to prove
the existence of the optimal treatment solution. This would allow doctors to estimate a few basic
parameters, and then prescribe an optimal treatment for the patient in order to clear the virus while
limiting the negative side effects associated with treatment therapies. Furthermore, our findings
illustrate that combination therapy can provide the same level of effectiveness as individual treat-
ments with much lower levels of toxicity. In our study, we included only two of several treatment
variants that are prescribed to patients suffering from HIV. Future work may include additional
therapies that we did not include in our study and may consider including novel treatment such as
immuotherapy, where the immune system is trained to identify the virus and eliminate the infec-
tion. In addition, one may be able to examine the timing in which treatment occurs and how that
impacts the viral dynamics and optimal solution.

Also, we determined that when considering treatments, it is extremely important to account for
any sort of natural delay that may occur as a result of treatment. We analyzed a delay differential
equation model which included a time delay as a result of normal viral cytopathic effects. Our
stability analysis revealed that a bifurcation occurs in both of the equilibria (viral clearance and
viral persistence). As a result, even though we may reduce the viral reproduction number below
one via effective treatment, the viral clearance equilibrium may not be a stable equilibrium if the
treatment causes massive viral cytopathic effects. This is extremely important when considering
treatment since the appropriate efficacy may not be sufficient to eliminate infection. Additional
analysis must be done on the impact that the treatment has with regard to delay prior to using
the models to prescribe treatment to an infected individual.

Furthermore, our review of the literature and several personal experiences revealed some im-
portant conclusions beyond the scope of this work. During the year, I volunteered at the AIDS
Medical Resource Center of Wisconsin, an HIV clinic located in his home-town of Milwaukee. While
at the clinic, I spent time working with patients who were being treated for and struggled with HIV
related general and chronic health conditions. In speaking with the patients, as well as the doctors
at the clinic, I came to the conclusion that the most important study that needs to be conducted is
not necessarily the dynamics of the virus and treatment in vivo, but rather how to get medications
and treatments to populations that need it the most. It is well known that the treatment for HIV
is extremely effective. Many patients who take medications see a significant decrease in viral load
and negative side effects; however, this only occurs as long as they remain consistently on the
medication. For many of them, that requires them to take numerous pills, every day, for the rest
of their lives. In short, a major problem is understanding how to get that treatment to patients,
and this should be explored.

However, treating patients necessitates developing the ability to effectively develop solutions to
combat the threat posed by the infection. While several other infectious diseases currently endanger
millions of people across the globe, little is understood about the dynamics of many of these threats.
For instance, the manner in which Zika virus as well as numerous other infectious diseases interact
with the immune system is not well understood. Models like the ones we described in our study,
when applied to these infections, may yield insights into the behavior and lead to the development
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of treatment protocols. Developments in computing, mathematics, biology, and immunology have
created an environment yearning for advanced mathematical analysis and insights gleaned from
integrating these areas together may lead to the development of innovative approaches to both
address and solve some of the world’s most perplexing biological problems.
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13 Appendix

To prove the existence and uniqueness of solutions, we must prove the following theorem, referred
to in Section 3.1.

Theorem (Fundamental Existence and Uniqueness Theorem). Suppose the function f : R
n → R

n

is continuously differentiable. Then x(t) is a solution of the differential equation dx
dt = f(x) on

an interval I if x(t) is differentiable on I and if ∀t ∈ I, x(t) ∈ R
n and dx

dt = f(x(t)) and given
x0 ∈ R

n, x(t) is a solution of the initial value problem

dx

dt
= f(x)

x(t0) = x0

Remark: The above is a well known theorem and ensures that the solutions exists and is unique in
the neighborhood of x0, i.e., the function is locally Lipschitz [25]. The proof for this theorem can
be found in [19].

Definition (Locally Lipschitz Functions). A function is locally Lipschitz if for each x0 ∈ R
n there

is a ε neighborhood of x0, Nε(x0) ⊂ R
n, and a constant k0 > 0, such that ∀x, y ∈ Nε(x0)

|f(x)− f(y)| ≤ k0|x− y|

In our analysis for P3 from section 6.3.6 we also need to show that a1a2a3 − (a2
3 + a2

1a4) > 0.

We know for P3, which is given by (T, I, V, E) = ( cλkE
pβdE+cdkE

, dE
kE

, pdE
ckE

, −pδβc+pβλkE−δckEd
kE(pβdE+cdkE) ):

a1a2a3 − (a2
3 + a2

1a4) = 1
c3k2

E(βpdE+cdkE)3

(
βpdEλ(δc5d2k5

E(c + d)(δdE − d2) + β5p5d3
E(dE(λkE −

δdE) + c2dE + cλkE) + β4p4cdEkE(dE(λkE(4dEd + λkE)− δdE(5dEd + λkE)) + c3d2
E +

c2dE(4dEd + λkE) + cλkE(3dEd + λkE)) + β3p3c2k2
E(δ2d4

E + δd2
E(c2dE − c(dEd + λkE)−

2dE(λkE + 5d2)− 3λdkE) + 3c3d2
Ed + c2dE(−dEλkE + 6dEd2 + 3λdkE) + cλkE(d2

Ed + dEλkE +
3dEd2 + λdkE) + dEλkE(dEλkE + 6dEd2 + 2λdkE)) + β2p2c3k3

E(δ2d3
E(c + 3d) + δdE(2c2dEd−

c(2dEλkE + 3dEd2 + λdkE)− d(4dEλkE + 10dEd2 + 3λdkE)) + 3c3dEd2 + c2d(−dEλkE + 4dEd2 +
2λdkE) + cλkE(dEλkE + 2dEd2 + d3) + λdkE(dEλkE + 4dEd2 + λdkE)) + βpc4dk4

E(δ2d2
E(2c +

3d) + δ(c2dEd− cdE(2λkE + 3d2)− d(2dEλkE + 5dEd2 + λdkE)) + d2(c + d)(c2 + λkE)))
)

thus, since pβ > δkE , pβλ > δdEc, R1 > 1, R0 > 1, and λkE(c + dE) > d2
Eδ we can simplify the

expression to show that a1a2a3 > (a2
3 + a2

1a4) and thus we have shown a1a2a3 − (a2
3 + a2

1a4) > 0.

Below we provided the numerical simulations for all four of the HIV models (the Target-Cell-
Limited, Constrained Target-Cell-Limited, Simple Immune, and Extended Immune).



13 APPENDIX 129

Figure 51: Simulations of the Tumor-Immunodeficiency Model
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Figure 52: Simulations of the Tumor-Immunodeficiency Model
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